
Software Evolution – Reader
Edition 2020/2021 – Version 0.25

Paul Klint 1 4, Jurgen Vinju 1 4 7, Tijs van der Storm (guest lecturer) 1 6, Magiel
Bruntink (guest lecturer) 3, Davy Landman (guest lecturer) 4, Vadim Zaytsev (guest
lecturer) 5, Ana Oprescu (lab teacher) 2, Simon Baars (lab teacher) 2, and Riemer

van Rozen (course coordinator, lecturer, lab teacher) 1 2

1Software Analysis & Transformation, Centrum Wiskunde & Informatica
2Master of Software Engineering, University of Amsterdam

3Software Improvement Group
4SWAT.engineering

5University of Twente
6University of Groningen

7Eindhoven University of Technology

December 10, 2020

Abstract

This is a reader to the course Software Evolution. It describes course goals, a
week-by-week course schedule, obligatory assignments and grading. In a nutshell,
this manual explains how to pass this course1. Updates are provided on Canvas.

1 Course Overview

Software Evolution is a course in the Master of Software Engineering at the Uni-
versity of Amsterdam of 6 ECTS. We provide descriptions of course material in
Section 1.2, required course activities in Section 1.3, a detailed schedule in Sec-
tion 1.5, reading in Section 1.6 and the evaluation in Section 1.4. Section 2 de-
scribes the practical assignments. This document is continuously being updated:
Please check Section 3 for a log of modifications over document versions. Please
read this document carefully!

1This reader does not explain how to get the most out of this course, that’s up to you.

Software Evolution’s Evolution. The Software Evolution course itself has evolved over
the years. Thanks and kudos for developing and maintaining this course and its assignments
go to: Prof. Dr. Paul Klint, Prof. Dr. Jurgen Vinju, Dr. Magiel Bruntink and Dr. Vadim
Zaytsev. Editor of the reader: Dr. ir. Riemer van Rozen.

1

1.1 Goals

The goals of the course are described in the study guide2.
Exit qualification: “The graduate masters the methods and techniques needed

to analyze an existing software system and to enable it to evolve given changing
requirements.”

Our objectives are three-fold:

• The first objective is to acquire an understanding and appreciation of the
challenges posed by software maintenance and software evolution.

• The second objective is to learn about quality of software and source code
and how it affects software maintenance and evolution.

• The final objective is to be able to select and also construct software analysis
and software transformation tools to help obtain insight in software quality
and to help improve software quality.

The course ties in closely with paper writing sessions where the objectives are to
learn from academic literature, to develop curiosity, and to improve argumentation
and writing skills.

1.2 Course Material

Slides & Papers. We provide a selection of scientific papers and lecture slides,
which are available on Canvas. Additional papers can be found at the

• ACM Digital Library http://www.acm.org/dl

• IEEE Digital Library http://ieeexplore.ieee.org
and https://www.computer.org

Rascal. For the practical lab assignments use metaprogramming language
and language workbench Rascal3. Rascal has a built-in Tutor that provides
explanations on concepts and interactive exercises for learning to apply language
features. Two non-interactive versions are available online, an old version4 and
a new one5. Additionally, questions can be posed on Stackoverflow6 using the
rascal tag, and issues can be reported on GitHub7.

2https://studiegids.uva.nl/xmlpages/page/2020-2021/zoek-vak/vak/79025
3http://www.rascal-mpl.org
4http://tutor.rascal-mpl.org (old tutor – may be outdated with recent unstable builds)
5http://docs.rascal-mpl.org/unstable/TutorHome (new tutor – not yet finished)
6http://stackoverflow.com/questions/tagged/rascal
7https://github.com/usethesource/rascal/issues

2

http://www.acm.org/dl
http://ieeexplore.ieee.org
https://www.computer.org
https://studiegids.uva.nl/xmlpages/page/2020-2021/zoek-vak/vak/79025
http://www.rascal-mpl.org
http://tutor.rascal-mpl.org
http://docs.rascal-mpl.org/unstable/TutorHome
http://stackoverflow.com/questions/tagged/rascal
https://github.com/usethesource/rascal/issues

1.3 Required Course Activities

The course consists of activities related to reading scientific papers, discussing
those papers, and attending lectures and the practical lab8.

• Reading: Study. Students study a selection of scientific papers each week,
as well as the slides that accompany the lecture. Please check the course
schedule for detailed information in Section 1.5 and weekly reading in Sec-
tion 1.6.

• Paper Sessions: Read and write. During the paper sessions students
discuss papers with the lecturer. Special attention is given to analyzing sci-
entific papers and writing reviews. As part of this course students are asked
to write an annotated bibliography.

• Lecture Part 1 – Seminar: Introduce and discuss a topic. During
the first part of the lecture on day 1 the lecturer introduces a subject by
presenting a deck of slides. The group questions the concepts, problems and
solutions and discusses them.

• Lecture Part 2 – Practical Lab: Work on assignments. During the
second part of the lecture on day 1 and on day 2 students work on practical
assignments. Students work on practical assignments in teams of two stu-
dents. Every practical session students are encouraged to ask for feedback
with the lecturer, improving their work over several iterations before finally
handing it in before the deadline, and the assignments are graded.

1.3.1 Grading

The course grade is the average of three grades9, for practical lab Series 1 and
Series 2 and an individual grade for an Annotated Bibliography of papers you have
studied10. Grades are calculated as follows.

grade(series1, annotated_bibliography, series2) =
(grade(series1) + grade(annotated_bibliography) + grade(series2))/3

1.4 Evaluation

Just like the programming students produce during the practical labs, this course
is also the product of iterative improvement. We request student feedback in two
ways:

• suggestions during the course, for quick on-the-fly improvements to current
and upcoming lectures.

• assessment at the end of the course, for improving the course structure, con-
tent and goals for the next year.

8Note: Lecture attendance is mandatory.
9Note: UvA’s rounding rules apply.

10Note: Practical lab Series 0 is mandatory but not graded.

3

1.5 Course Schedule

Table 1 shows a week-by-week schedule of topics, lecture dates and lecturers. The
columns L andW indicate the lecture week number and the calendar week number.
The columns Subject, Date and Lecturer receptively show a brief description of the
subjects for that week, the date of the lecture, and the name of the (guest) lecturer.

Table 2 shows reading, assignments and deadlines. The column Reading speci-
fies which papers to study. The columns Practical Lab and Deadlines show which
practical lab to work on during that week, and which assignments are due11.

L W Subject Date Lecturer

1 44 Introduction to Software Evolution Oct 26th Riemer van Rozen

2 45 Meta-programming and Rascal Nov 2nd Tijs van der Storm

3 46 Software Metrics, the SIG Perspective Nov 9th Magiel Bruntink

4 47 CC & SLOC, SWAT.engineering Nov 16th Davy Landman

5 48 Clone Detection and Management Nov 23rd Riemer van Rozen

6 49 Legacy Software and Renovation Nov 30th Vadim Zaytsev

7 50 Model Evolution Dec 7th Riemer van Rozen

Table 1: Course Plan: Lecture Topics, Lecture Dates and Lecturers

L W Reading Practical Lab Deadlines

1 44 Mens [21]. Herraiz et al. [11]. Series 0 & 1 Series 0

2 45 Klint et al. [14]. Series 1

3 46 Fenton [6]. Heitlager et al. [9].
Basili et al. [4].

Series 1

4 47 Landman et al. [19] Series 2 Series 1

5 48 Koschke [17]. Kapser and Godfrey [13]. Series 2

6 49 Zaytsev [31]. Series 2 Series 2

7 50 Hermannsdörfer and Wachsmuth [10].
Alanen and Porres [1]. van Rozen and van
der Storm [27].

Series 2

8 51 no additional reading Annotated
bibliography

Table 2: Course Plan: Reading, Assignments and Deadlines

11Note: Please find the exact deadlines in the assignment descriptions

4

1.6 Reading

This is the list of papers students read during the course, organised week-by-week
the papers are covered in the lectures. Each paper on this list from weeks 1–5 is to
be included in the annotated bibliography that students create during the course.
The reading from weeks 6 and 7 is recommended reading only.

Lecture 1

• T. Mens. “Software Evolution”. In: ed. by T. Mens and S. Demeyer. Springer,
2008. Chap. 1. Introduction and Roadmap: History and Challenges of Soft-
ware Evolution, pp. 2–11. isbn: 978-3-540-76440-3. doi: 10.1007/978-3-
540-76440-3

• I. Herraiz et al. “The Evolution of the Laws of Software Evolution: A Discus-
sion Based on a Systematic Literature Review”. In: ACM Comput. Surv. 46.2
(Dec. 2013), pp. 1–28. issn: 0360-0300. doi: 10.1145/2543581.2543595

Lecture 2

• P. Klint, T. v. d. Storm, and J. Vinju. “RASCAL: A Domain Specific Lan-
guage for Source Code Analysis and Manipulation”. In: Proceedings of the
2009 Ninth IEEE International Working Conference on Source Code Analysis
and Manipulation, SCAM 2009, Edmonton, AB, Canada, September 20–21,
2009. IEEE, 2009, pp. 168–177. isbn: 978-0-7695-3793-1. doi: 10.1109/
SCAM.2009.28

Lecture 3

• N. Fenton. “Software Measurement: A Necessary Scientific Basis”. In: IEEE
Transactions on Software Engineering 20.3 (Mar. 1994), pp. 199–206. issn:
0098-5589. doi: 10.1109/32.268921

• I. Heitlager, T. Kuipers, and J. Visser. “A Practical Model for Measuring
Maintainability”. In: Quality of Information and Communications Technol-
ogy, 2007. QUATIC 2007. 6th International Conference on the. 2007, pp. 30–
39. doi: 10.1109/QUATIC.2007.8

• V. and Basili, G. Caldiera, and H. D. Rombach. “Encyclopedia of Software
Engineering”. In: Wiley, 2002. Chap. Goal Question Metric (GQM) Ap-
proach. isbn: 9780471028956. doi: 10.1002/0471028959.sof142

Lecture 4

• D. Landman, A. Serebrenik, and J. J. Vinju. “Empirical Analysis of the
Relationship between CC and SLOC in a Large Corpus of Java Methods”. In:
30th IEEE International Conference on Software Maintenance and Evolution,
ICSME 2014, Victoria, BC, Canada, September 29–October 3, 2014. 2014,
pp. 221–230. isbn: 978-1-4799-6146-7. doi: 10.1109/ICSME.2014.4412

12An extended journal version exists [18].

5

https://doi.org/10.1007/978-3-540-76440-3
https://doi.org/10.1007/978-3-540-76440-3
https://doi.org/10.1145/2543581.2543595
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1109/32.268921
https://doi.org/10.1109/QUATIC.2007.8
https://doi.org/10.1002/0471028959.sof142
https://doi.org/10.1109/ICSME.2014.44

The original reading of this week has become optional, and is not required for
the annotated bibliography:

• S. Erdweg et al. “The State of the Art in Language Workbenches: Con-
clusions from the Language Workbench Challenge”. In: Software Language
Engineering – Proceedings of the 6th International Conference, SLE 2013,
Indianapolis, IN, USA, October 26–28, 2013. Ed. by M. Erwig, R. F. Paige,
and E. Van Wyk. Vol. 8225. LNCS. Springer, 2013, pp. 197–217. isbn:
978-3-319-02654-1. doi: 10.1007/978-3-319-02654-1_11

Lecture 5

• R. Koschke. “Software Evolution”. In: ed. by T. Mens and S. Demeyer.
Springer, 2008. Chap. 2. Identifying and Removing Software Clones, pp. 15–
36. isbn: 978-3-540-76440-3. doi: 10.1007/978-3-540-76440-3

• C. Kapser and M. W. Godfrey. “"Cloning Considered Harmful" Considered
Harmful”. In: 2006 13th Working Conference on Reverse Engineering. Oct.
2006, pp. 19–28. doi: 10.1109/WCRE.2006.1

Lecture 6 The following papers is recommended reading only, and are not re-
quired for the annotated bibliography assignment.

• V. Zaytsev. “Software Language Engineers’ Worst Nightmare”. In: Proceed-
ings of Software Language Engineering 2020 (SLE 2020). Nov. 2020. doi:
10.1145/3426425.3426933

Lecture 7 The following papers are recommended reading only, and are not
required for the annotated bibliography assignment.

• M. Hermansdörfer and G. Wachsmuth. “Evolving Software Systems”. In:
ed. by T. Mens, A. Serebrenik, and A. Cleve. Springer, 2014. Chap. 2.
Coupled Evolution of Software Metamodels and Models, pp. 33–63. isbn:
978-3-642-45398-4. doi: 10.1007/978-3-642-45398-4

• M. Alanen and I. Porres. “Difference and Union of Models”. In: «UML»
2003 - The Unified Modeling Language. Modeling Languages and Applications
– Proceedings of the 6th International Conference, San Francisco, CA, USA,
October 20–24, 2003. Ed. by P. Stevens, J. Whittle, and G. Booch. Vol. 2863.
LNCS. Springer, 2003, pp. 2–17. isbn: 978-3-540-45221-8. doi: 10.1007/
978-3-540-45221-8_2

• R. van Rozen and T. van der Storm. “Toward Live Domain-Specific Lan-
guages: From Text Differencing to Adapting Models at Run Time”. In:
Software & Systems Modeling 18.1 (Feb. 2019). Special Section Paper on
STAF2015. Received June 27th 2016. Revised May 26th 2017. Accepted
June 20th 2017. First Online August 14th 2017, pp. 195–212. issn: 1619-
1374. doi: 10.1007/s10270-017-0608-7

Lecture 8 no additional reading

6

https://doi.org/10.1007/978-3-319-02654-1_11
https://doi.org/10.1007/978-3-540-76440-3
https://doi.org/10.1109/WCRE.2006.1
https://doi.org/10.1145/3426425.3426933
https://doi.org/10.1007/978-3-642-45398-4
https://doi.org/10.1007/978-3-540-45221-8_2
https://doi.org/10.1007/978-3-540-45221-8_2
https://doi.org/10.1007/s10270-017-0608-7

Publications related to Master and Course Projects

The following papers have resulted from student projects related to this course.
These papers serve as inspirational examples only, and are not required for the
annotated bibliography assignment.

• A. Hamid and V. Zaytsev. “Detecting Refactorable Clones by Slicing Pro-
gram Dependence Graphs”. In: Post-proceedings of the Seventh Seminar
on Advanced Techniques and Tools for Software Evolution, SATToSE 2014,
L’Aquila, Italy, July 9–11, 2014. Ed. by D. di Ruscio and V. Zaytsev.
Vol. 1354. CEUR Workshop Proceedings. CEUR-WS.org, 2014, pp. 37–
48. url: http://ceur-ws.org/Vol-1354/paper-04.pdf

• J. Jansen, A. Oprescu, and M. Bruntink. “The Impact of Automated Code
Quality Feedback in Programming Education”. In: Proceedings of the Semi-
nar Series on Advanced Techniques and Tools for Software Evolution, SAT-
ToSE 2017, Madrid, Spain, June 7–9, 2017. Vol. 2070. CEUR Workshop
Proceedings. CEUR-WS.org, 2017. url: http://ceur- ws .org/Vol-
2070/paper-04.pdf

• N. Lodewijks. “Analysis of a Clone-and-Own Industrial Automation System:
An Exploratory Study”. In: Proceedings of the Seminar Series on Advanced
Techniques and Tools for Software Evolution, SATToSE 2017, Madrid, Spain,
June 7–9, 2017. Vol. 2070. CEUR Workshop Proceedings. CEUR-WS.org,
2017. url: http://ceur-ws.org/Vol-2070/paper-05.pdf

• R. van Rozen and Q. Heijn. “Measuring Quality of Grammars for Procedural
Level Generation”. In: Proceedings of the 13th International Conference on
Foundations of Digital Games, FDG 2018, as part of the 9th Workshop on
Procedural Content Generation, PCG 2018, Malmö, Sweden, August 7–10,
2018. ACM, 2018, pp. 1–8. doi: 10.1145/3235765.3235821

• S. Baars and S. Meester. “CodeArena: Inspecting and Improving Code Qual-
ity Metrics using Minecraft”. In: Proceedings of the 2nd International Confer-
ence on Technical Debt, TechDebt@ICSE 2019, Montreal, QC, Canada, May
26–27, 2019. Ed. by P. Avgeriou and K. Schmid. IEEE, 2019, pp. 68–70.
doi: 10.1109/TechDebt.2019.00023

7

http://ceur-ws.org/Vol-1354/paper-04.pdf
http://ceur-ws.org/Vol-2070/paper-04.pdf
http://ceur-ws.org/Vol-2070/paper-04.pdf
http://ceur-ws.org/Vol-2070/paper-05.pdf
https://doi.org/10.1145/3235765.3235821
https://doi.org/10.1109/TechDebt.2019.00023

2 Assignments

Students are required to complete three obligatory practical assignment series for
this course. During the first (Series 0) you work alone. This series is approved but
not graded. During the second and third (Series 1 and 2) you work in the same
group of two students. When you have completed the assignment you can request
your lecturer to approve your work by explaining what you did. Ask your lecturer
how to deliver the solutions of the assignments. Deadlines are at the end of the
week. Table 3 shows how to work on assignments and Table 4 when to work on
assignments and deadlines to deliver them.

Deliverable Type of work

Practical Lab Series 0 Individual work
Practical Lab Series 1 Team work
Annotated Bibliography Individual work
Practical Lab Series 2 Team work

Table 3: Assignments and how to work on them.

L W Practical Lab Writing Deadline

1 44 Series 0 and 1 Annotated Bibliography Series 0

2 45 Series 1 Annotated Bibliography

3 46 Series 1 Annotated Bibliography
Early Grading Series 1

4 47 Late Grading Series 1 Annotated Bibliography Series 1 – Tue. Nov. 17th
Series 2

5 48 Series 2 Annotated Bibliography

6 49 Series 2

7 50 Series 2 Series 2 – Sun. Dec. 13th

8 51 Grading Series 2 Annotated Bibliography

Table 4: When to work on assignments and deadlines to deliver them.

Next we describe the practical assignments, which include details on grading
for each assignment series.

8

Annotated Bibliography

During the lectures and the paper sessions we use several papers in the field of
software evolution. In this assignment you structure your own thoughts on these
papers and exercise your skills at creating summaries and syntheses by writing a
scientific paper.

Collaboration

You need to perform this assignment individually. You are allowed to discuss
literature with other students, but have to write the annotated bibliography alone.

Assignment

For each paper of the first 5 weeks on the reading list of Section 1.6.

• Content. Write a concise discussion (2-4 coherent paragraphs in your own
words) of the major points of the paper.

• Format. Submissions should use the article format, single column, standard
page width, 11 point font, using the font family Times New Roman. Please
use the template shown in Figure 2. All submissions should be in PDF format.

• Page limit. Submissions are limited to 5 pages excluding bibliographic
references. Submissions that exceed the page limit will not be graded.

The lectures provide a presentation of the reading material, but of course this
is subject to the teacher’s interpretations and preferences. In your text you argue
your critical opinion, a perspective on the subject matter that is well-argued,
insightful, and can be adopted by the reader (the audience). A good text is clear,
concise, presents relevant argumentation and displays critical thinking. To further
strengthen the bibliography, you can relate other literature you find yourself.

Example questions to consider are the following. What can be learnt from a
paper, what is its intended audience, and what are its scientific contributions?
Does the paper have practical implications, and what are the costs and benefits of
applying the proposed approach or best practices (if any)? What is the research
methodology, and how are its claims validated and evaluated? Are there threats
to validity? How does the paper relate to other work, and to the state-of-the-art?

Hints

We encourage you to compare some annotated bibliographies and commonly used
templates for choosing how to structure your paper, e.g., Cornell’s guidelines13.
Your paper structure might contain the following elements as discussed in the
reading assignments from “Preparation Master Project”.

• Introduction. The annotated bibliography should be a self-contained article
which requires an introduction. An introduction usually describes the topic,
intended audience, and sketches a structure (why, what, how).

13http://guides.library.cornell.edu/annotatedbibliography

9

http://guides.library.cornell.edu/annotatedbibliography

• Annotations per paper. The annotations per paper might be as described
in Table 5, and consider omitting irrelevant sections and include only infor-
mation that is noteworthy.

Please consider the following (non-exhaustive) general writing tips.

• Write in the ‘we’ form. That way readers can more easily adopt a view point.
• Use the present tense where possible. This usually reduces the complexity and

puts the focus on substance. Unnecessarily switching tenses can be confusing.
• Consider breaking up long sentences into shorter ones. By doing so, you can

avoid bad sentences and improve the clarity of the text.
• Be concise and avoid repetition. Use your space economically.

\documentclass [11pt]{ article}
\begin{document}
\title{Title Text}
\author{Name (and student number)\\ Affiliation \\ Email}
\maketitle
\section{Introduction}
The text of the paper begins here.
%your sections go here
\bibliographystyle{plain}
\bibliography{papers.bib} %create a separate file containing the BibTex
\end{document}

Figure 1: Annotated Bibliography LaTeX Template

Section Description Approx. size

Summary Topic, problem statement, objectives and approach. 3 sentences
Significance The subject addressed in the article is worthy of investi-

gation.
1 sentence

Originality The information presented was new. 1 sentence
Quality Quality of technical content. 1 sentence
Relevance Why and how is the paper relevant? 1 sentence
Readability Is the paper well-structured and understandable? 1 sentence
Overall Overall the conclusions were supported by the data. 1 sentence

Table 5: “Preparation Master Project” Suggested Annotations per Paper

Grading

The annotated bibliography will be graded using the following model:
The base grade is 7. For this grade you need to produce an annotated bibli-

ography that conforms to the assignment described above. The factors of Table 6
modify the base grade. The grade range is 1 to 10.

Deadline

The annotated bibliography should be delivered in course week 8.

We give a deadline extension until December 31st 2020.

10

Factor Base grade
modification

Missing name and or introduction paragraph -0.5
Writing quality: proper spelling, grammar, and structure. -1.0 to +1.0
Each paper on the reading list that is missing or not covered in
sufficient depth in the bibliography.

-0.5 per missing paper

The bibliography clearly argues the students critical opinion on
the contents of the papers.

+0.5 to +1.0

The bibliography considers literature outside of the reading list
to support argumentation.

+0.5 to +1.0

Table 6: Grading Conditions and Scoring for the Annotated Bibliography

11

Practical Lab Series 0 – Rascal Basics

Rascal is a meta-programming language and language workbench that enables
constructing source code analyzers, programming languages, compilers and tools.
We will use Rascal for the practical labs of this course.

In this lab you learn the basic facts about Rascal [14, 15, 16] and practice
applying its language features. The idea is that you learn to interact with Rascal
using Eclipse by doing a few small challenges in Rascal. As a reference for learning
Rascal syntax, we recommend taking a look at the Rascal documentation and
Rascal recipes pages.

Installation

Please see http://www.rascal-mpl.org for download and installation instruc-
tions. In addition to these instructions we provide the following tips.

• Make sure you obtain at most 2020-06 (nothing newer) of the RCP/RAP de-
velopers edition of Eclipse. https://www.eclipse.org/downloads/packages/
release/2020-06/r/eclipse-ide-rcp-and-rap-developers

• Please use JDK 8. https://www.oracle.com/java/technologies/javase/
javase-jdk8-downloads.html

• We recommend using the stable version of Rascal. Use unstable only if
needed.

• Adjust the eclipse.ini in the Eclipse folder to set the correct VM path (-vm
path) and adjust the VM parameters (-vmargs), e.g., for increasing the size
of the stack (-Xms512m) and the heap (-Xmx4096m). See for instance Figure 2.

• Please do not use spaces in your Eclipse path.

-vm
C:\ Program Files\Java\jdk 1.8.0_261\ bin
-vmargs
-Xms 512m
-Xmx 4096m

Figure 2: Example of a partial eclipse.ini on Windows

Documentation

Updating Rascal’s documentation with its new implementation is ongoing work.

• Rascal has built-in documentation called the Tutor.

• A copy of the Tutor can also be found online. http://docs.rascal-mpl.org.

• Please note that the old documentation, which is still available online, is
becoming more and more outdated. http://tutor.rascal-mpl.org/.

• Additionally, it can help to look into Rascal’s source code to learn more
about its features.

12

http://tutor.rascal-mpl.org/Rascal/Rascal.html
http://tutor.rascal-mpl.org/Recipes/Recipes.html
http://www.rascal-mpl.org
https://www.eclipse.org/downloads/packages/release/2020-06/r/eclipse-ide-rcp-and-rap-developers
https://www.eclipse.org/downloads/packages/release/2020-06/r/eclipse-ide-rcp-and-rap-developers
https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
http://docs.rascal-mpl.org
http://tutor.rascal-mpl.org/

Questions and Bugs Reports

Please use the following platforms for questions and bug reports.

• We invite you to pose questions and to share how to resolve issues on Slack.

• Technical questions, related to code, should be asked on Stackoverflow using
the rascal tag: http://stackoverflow.com/questions/tagged/rascal.

• Bug reports can be submitted on GitHub.
https://github.com/usethesource/rascal/issues.

Collaboration

Please do these exercises individually. Any communication between students is
allowed, but bear in mind that you should personally be capable to code in Rascal
after this.

Assignment

Fully explore the Rascal Tutor and teach yourself Rascal.

• Study its concepts, language features and library.
http://docs.rascal-mpl.org/unstable/

• Select recipes to try out and run. You can find the sources included in the
distribution. http://docs.rascal-mpl.org/unstable/Recipes

You will be assisted in the laboratory to install the system and type your first
expressions and statements. Please ask the teachers any question about Rascal
or the exercises you might have. It will be hard work!

Grading

This series is not graded. Please explore, investigate and study Rascal until you
are confident you have sufficient knowledge to start Series 1.

Deadline

You should finish Series 0 in the first week of the course in order to start Series 1.

13

http://stackoverflow.com/questions/tagged/rascal
https://github.com/usethesource/rascal/issues
http://docs.rascal-mpl.org/unstable/
http://docs.rascal-mpl.org/unstable/Recipes

Practical Lab Series 1 – Software Metrics

In Series 1 we focus on software metrics. Software metrics are used (for example)
by the Software Improvement Group (http://www.sig.eu) to quickly gain an
overview of the quality of software systems and to pinpoint problem areas that
may cause low maintainability. Some relevant questions are:

1. Which metrics are used?
2. How are these metrics computed?
3. How well do these metrics indicate what we really want to know about these

systems and how can we judge that?
4. How can we improve any of the above?

In other words, you have to worry about motivation and interpretation of met-
rics, as well as correct implementation.

The SIG Maintainability Model provides an answer to question 1. You can read
about it here:

• I. Heitlager, T. Kuipers, and J. Visser. “A Practical Model for Measuring
Maintainability”. In: Quality of Information and Communications Technol-
ogy, 2007. QUATIC 2007. 6th International Conference on the. 2007, pp. 30–
39. doi: 10.1109/QUATIC.2007.8.

• Additional information can be found online, e.g. Baggen et al. [3], Visser et
al. [29] and https://www.sig.eu/resources/sig-models/

The second question above (“How are these metrics computed?”) is your as-
signment for Series 1. The third and fourth questions will be addressed during the
grading session.

Collaboration

Please make groups of two students. You can work together as a pair on all aspects
of this assignment. You can brainstorm with anybody else about the contents of
your report, but for this assignment you are not allowed to look at code from other
groups or exchange solutions in detail with other groups.

Assignment

Using Rascal, design and build a tool that calculates the SIG Maintainability
Model scores for a Java project. Document your approach in a report that com-
plements the implementation, e.g., by describing relevant design decisions, tests,
results, and what you did to address threats to validity.

Calculate at least the following metrics:

• Volume,
• Unit Size,
• Unit Complexity,
• Duplication.

14

http://www.sig.eu
https://doi.org/10.1109/QUATIC.2007.8
https://www.sig.eu/resources/sig-models/

For all metrics you calculate the actual metric values, for Unit Size and Unit
Complexity you additionally calculate a risk profile, and finally each metric gets a
score based on the SIG model (−−, −, o, +, ++).

Calculate scores for at least the following maintainability aspects based on the
SIG model:

• Maintainability (overall),

• Analysability,

• Changeability,

• Testability.

You can earn bonus points by also implementing the Test Quality metric and
a score for the Stability maintainability aspect.

Use this zip file to obtain compilable versions of two Java systems (smallsql and
hsqldb): zip file14

• smallsql is a small system to use for experimentation and testing. Import
as-is into Eclipse and ignore build errors.

• hsqldb is a larger system to demonstrate scalability. Import into Eclipse.
Make sure to have only hsqldb/src on the build path, and add the following
external jars from your eclipse/plugins/ directory: javax.servlet_$VERSION.jar
and org.apache.ant_$VERSION/lib/ant.jar

Hints

• Create an Eclipse Java project with example files to test your solution on
(using the Rascal test functionality).

• Create an Eclipse Java project for each of the two systems, smallsql and
hsqldb too. Some few lines of code will still not compile, but commenting
them out would not change the metrics too much. So commenting out just a
few lines is ok in this case. It saves time!

Grading

The assignment is judged by demonstrating your results and your code to us in
a small interactive session. At the end of this session you will immediately get a
grade between 3 and 10.

You also have to submit a zip file containing the source code and a PDF of the
obligatory report in the Canvas assignments. The files are checked for plagiarism
automatically. If you worked in a team of two, submit your assignment twice: one
for each student!

You will be graded using the following model. The base grade is 7. For this
grade you need an implementation that conforms to the assignment described
above. The implementation consists of sensible design and code. You can explain
and motivate how it actually reads in the Java code and calculates the metrics

14http://homepages.cwi.nl/~jurgenv/teaching/evolution1314/assignment1.zip

15

http://homepages.cwi.nl/~jurgenv/teaching/evolution1314/assignment1.zip
http://homepages.cwi.nl/~jurgenv/teaching/evolution1314/assignment1.zip

Condition Base grade
modification

The metric value (total LOC) and/or score for Volume deviate without
good motivation

-0.5 to -1.0

The metric value (%) and/or score for Duplication deviate without good
motivation

-0.5 to -1.0

The risk profile and/or score for Unit Size deviate without good moti-
vation

-0.5 to -1.0

The risk profile and/or score for Unit Complexity deviate without good
motivation

-0.5 to -1.0

The scores calculated for the maintainability aspects deviate without
good motivation

-0.5

Your tool produces output that allows easy verification of the correctness
of the result (metric values, risk profiles, scores, etc. are neatly listed
next to each other)

+0.5

You also implemented Test Quality and Stability and can argue their
correctness

+0.5

Your tool produces correct output for hsqldb within the time span of the
grading session (approximately 30 minutes); if clone detection is turned
off you may get at most an extra half point

+0.5 to +1.0

You can demonstrate that your own code is of high maintainability and
has proper automated tests

+0.5

You have found another metric in the literature that is not in the SIG
Maintainability Model, and you can argument why and how it would
improve the results

+0.5 to +1.0

Table 7: Grading Conditions and Scoring for Series 1

based on that. Your implementation can be run during the grading session on at
least the smallsql project. For grading, import the smallsql project into Eclipse
as-is and ignore the 100 or so build errors. Table 7 shows conditions and how they
modify the grade (the teachers have a reference implementation that provides the
correct outputs).

Deadline

To alleviate the planning clash with the thesis fair this year we give two options
for the formative grading sessions. Students can choose between:

1. “early” grading in Week 3 on Mon. November 9th and Tue. November 10th.

2. “late” grading in Week 4 on Mon. November 16th and Tue. November 17th.

The deadline for Series 1 is extended accordingly to:
Tuesday November 17th at the latest.

16

Practical Lab Series 2 – Clone Detection

Code cloning is a phenomenon that is of both scientific and practical interest. In
the lecture and the related papers, clone detection and management techniques
were discussed, as well as the various arguments surrounding the problems that
code cloning causes.

In this lab we will take a more hands-on approach by building our own clone
detection and management tools. Such tools should be of help to software engineers
like yourselves, so be sure that your solution will at least satisfy your own needs!
Furthermore, tool building for others is a challenging activity by itself. We expect
you to find some literature on this topic yourself and use it in your design. A
suggested paper on visual tools for software exploration is:

• M.-A. D. Storey, F. D. Fracchia, and H. A. Müller. “Cognitive Design Ele-
ments to Support the Construction of a Mental Model during Software Ex-
ploration”. In: Journal of Systems and Software 44.3 (1999), pp. 171–185.
issn: 0164-1212. doi: 10.1016/S0164-1212(98)10055-9

Compared to Lab Series 1, this assignment will be more open. Your solution
will be graded using more generic criteria, with a stronger emphasis on motivation
and argumentation. You will need to use literature discussed and referenced in the
lectures to find and motivate good solutions: for instance for finding an appropriate
clone detection algorithm.

Collaboration

Please work in groups of two students. Complete the assignment in the same
groups you did for Series 1. You can brainstorm, but for this assignment you are
not allowed to look at code from other groups or exchange solutions in detail with
other groups.

Assignment

The assignment consists of two main deliverables:

1. A Working prototype implementation of a clone management tool, consisting
of the following elements:
(a) A clone detector (whose back-end is written in Rascal) that detects at

least Type 1 clones in a Java project:
• The detected clone classes are written to file in a textual representa-

tion.
• Clone classes that are strictly included in others are dropped from

the results (subsumption).
• The detector is scalable and works on bigger projects such as hsqldb.

(b) A report of cloning statistics showing at least the % of duplicated lines,
number of clones, number of clone classes, biggest clone (in lines), biggest
clone class, and example clones.

(c) At least one insightful visualization of the cloning in a project. The
lecture discusses several example visualizations you could use.

17

https://doi.org/10.1016/S0164-1212(98)10055-9

(d) A convincing test harness (an automated regression test framework) that
ensures your clone detector works.

2. B. Design documentation that (1) describes and (2) motivates the following
elements:
(a) The 3 main requirements your tool satisfies from the perspective of a

maintainer (see for instance [28]), and the related implementation choices.
(b) The exact type of clones your tool detects. Start from Type 1, Type 2,

... but become more specific.
(c) The core of the clone detection algorithm that you use (in pseudo-code).
(d) The visualization(s) you implemented: how do they help a maintainer or

developer?

To score a higher grade than the base grade (7), additionally do:
• Also detect Type 2 and Type 3 clone classes.
• Implement more visualizations that provide additional insight.
• Produce maintainable code that is covered by unit tests.

Implementation

Use any method you like, but go beyond what you have done in Series 1. The
detection part must be in pure Rascal, the visualisation is allowed to tap into
other languages. If you opt for a PDG/SDG approach, consider using a Rascal
library (it is in a separate repository, clone or fork it).

Related Work on Software Clones

The following resources can help you get acquainted with clone management:

• C. K. Roy, J. R. Cordy, and R. Koschke. “Comparison and Evaluation of
Code Clone Detection Techniques and Tools: A Qualitative Approach”. In:
Sci. Comput. Program. 74.7 (May 2009), pp. 470–495. issn: 0167-6423.
doi: 10.1016/j.scico.2009.02.007. url: http://dx.doi.org/10.1016/
j.scico.2009.02.007

• D. Rattan, R. Bhatia, and M. Singh. “Software Clone Detection: A Sys-
tematic Review”. In: Information and Software Technology 55.7 (July 2013),
pp. 1165–1199. issn: 0950-5849. doi: 10.1016/j.infsof.2013.01.008.

• C. K. Roy, M. F. Zibran, and R. Koschke. “The Vision of Software Clone
Management: Past, Present, and Future (Keynote paper)”. In: Software
Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE), 2014
Software Evolution Week - IEEE Conference on. Feb. 2014, pp. 18–33. doi:
10.1109/CSMR-WCRE.2014.6747168

• C. Kapser and M. W. Godfrey. “"Cloning Considered Harmful" Considered
Harmful”. In: 2006 13th Working Conference on Reverse Engineering. Oct.
2006, pp. 19–28. doi: 10.1109/WCRE.2006.1

The first three are overviews [25, 23, 24], the next one is a highly cited contro-
versial piece [13], the last one is an example paper that can result from a Master’s
thesis – it is easy to read and contains a simplified brief overview of the field [7].

18

https://doi.org/10.1016/j.scico.2009.02.007
http://dx.doi.org/10.1016/j.scico.2009.02.007
http://dx.doi.org/10.1016/j.scico.2009.02.007
https://doi.org/10.1016/j.infsof.2013.01.008
https://doi.org/10.1109/CSMR-WCRE.2014.6747168
https://doi.org/10.1109/WCRE.2006.1

Related Work on Visualization

Use any of the following resources. Lecture slides:

• You may choose to use Rascal’s figure library. Documentation on that
library can be found in Paul Klint’s lecture entitled “Towards Visual Analyt-
ics”15

Some inspiring papers:

• H. Murakami, Y. Higo, and S. Kusumoto. “ClonePacker: A Tool for Clone
Set Visualization”. In: Proceedings of the 22nd International Conference on
Software Analysis, Evolution and Reengineering. Ed. by Y.-G. Gueheneuc,
B. Adams, and A. Serebrenik. IEEE, 2015, pp. 474–478. isbn: 978-1-4799-
8469-5. doi: 10.1109/SANER.2015.7081859

• L. Voinea and A. C. Telea. “Visual Clone Analysis with SolidSDD”. in: Pro-
ceedings of the Second IEEE Working Conference on Software Visualization.
IEEE, 2014, pp. 79–82. doi: 10.1109/VISSOFT.2014.22

• A. Hanjalic. “ClonEvol: Visualizing Software Evolution with Code Clones”.
In: Proceedings of the First IEEE Working Conference on Software Visual-
ization. IEEE, 2013, pp. 1–4. doi: 10.1109/VISSOFT.2013.6650525

Visualization Libraries:

• Salix is a library for interactive tools and visualizations in Rascal using a
browser16. Several demos are available, including live programming of state
machines, similar to the running example of [27]. – powerful yet experimental

• The built-in visualization modules of Rascal are vis::*. Sources17. Tu-
tor18.

• Examples of external visualisation libraries are D319, vis20, Vega21 and Gephi22.

15please find it on Canvas
16https://github.com/cwi-swat/salix
17https://github.com/usethesource/rascal/tree/master/src/org/rascalmpl/library/vis
18http://tutor.rascal-mpl.org/Rascal/Libraries/Vis/Vis.html
19https://d3js.org
20http://visjs.org
21https://vega.github.io/vega/
22https://gephi.org

19

https://doi.org/10.1109/SANER.2015.7081859
https://doi.org/10.1109/VISSOFT.2014.22
https://doi.org/10.1109/VISSOFT.2013.6650525
https://github.com/cwi-swat/salix
https://github.com/usethesource/rascal/tree/master/src/org/rascalmpl/library/vis
http://tutor.rascal-mpl.org/Rascal/Libraries/Vis/Vis.html
https://d3js.org
http://visjs.org
https://vega.github.io/vega/
https://gephi.org

Grading

The assignment is judged by demonstrating your results and your code to us in
a small interactive session. At the end of this session you will immediately get a
grade between 1 and 10. Submissions that lack a report (design document) will
not be graded.

You also have to drop a zip file with the source code and a pdf of the obligatory
report in the assignments. The files are checked for plagiarism automatically. If
you worked in a team of two, drop your assignment twice: one for each student!

You will be graded using the following model: The base grade is 7. To qualify
for grading you first need a solution that complies to the assignment described
above. During the grading session (15 minutes), your tool should complete on at
least the smallsql project used in Lab Series 1.

The following conditions modify the grade: The base grade is 7. Table 8 shows
grading conditions and how they modify the grade.

Condition Base grade
modification

Type I clone classes are incorrectly detected. -0.5 to -1.0

Test harness (automated test framework) is unconvincing, is limited in
scope or not thorough.

-0.5 to -1.0

Cloning visualization does not give insight or does not work properly. -1.0

The clone detection report is incomplete or incomprehensible. -0.5 to -1.0

Type II clone classes are correctly detected and visualized +0.5 to +1.0

Type III clone classes are correctly detected and visualized +0.5 to +1.0

Your tool and design document include additional convincing visualiza-
tions

+0.5 to +1.0

Not able to explain the core algorithm or answer questions about it -1.0

Documentation describes unfounded, unsupported, illogical or anecdotal
motivation for visualisations

-1.0

Non-interactive static visualisation -1.0

Does not work on hsqldb -0.5

Table 8: Grading Conditions and Scoring for Series 2

Deadline

The deadline for Series 2 is course week 7:
Sunday December 13th at the latest.

20

3 Change Log

Table 9 shows the changes made to this document. Contributions are by Riemer
van Rozen (RvR) and Ana Oprescu (AO). The latest changes appear at the top.

V. Date Modification A.

0.25 Dec 10th 2020 Clarified the scalability requirement for Series 2. RvR

0.24 Nov 22nd 2020 Swapped the lectures of week 6 and week 7. Added optional
reading on legacy software. Abbreviated bib. entries.

RvR

0.23 Nov 6th 2020 Clarified the annotated bibliography assignment. RvR

0.22 Oct 12th 2020 Updated the schedule for course Edition 20/21. Clarified re-
quirements for the practical lab.

RvR

0.21 Nov 7th 2019 Modified the schedule of the mini-symposium. Extended the
deadline for Series 1, and added options early (week 3) and
late (week 4) formative grading sessions.

RvR

0.20 Nov 4th 2019 Clarified Series 1 requires handing in a report. RvR

0.19 Oct 7th 2019 Updated guest lecturers. Added SIG mini-symposium on Fri-
day November 8th.

RvR

0.18 Sep 29th 2019 Updated Rascal description. Added url of the unstable Tu-
tor. Added deadlines for 19/20. Added CodeArena paper.
Increased page limit to 5 for the Annotated Bibliography as-
signment. Added additional resources for Series 1.

RvR

0.17 Nov 6th 2018 Modified week 4 guest lecture topic and reading. RvR

0.16 Nov 1st 2018 Added papers written in the context of master projects. Up-
dated bibliographical data.

RvR

0.15 Oct 28th 2018 Updated reading of lecture 4 and series 1 deadline. RvR

0.14 Sept 17th 2018 Updated course schedule and lecturers. Added link to SIG
model in Series 1. Added Salix framework to Series 2.

RvR

0.13 Nov 21st 2017 Added this week’s reading. RvR

0.12 Nov 14th 2017 Fixed a critical error that was introduced in version 0.11 of the
annotated bibliography assignment description. The correct
page limit is 4 pages.

RvR

0.11 Nov 5th 2017 Simplified the LaTeX template for the annotated bibliography. RvR

0.10 Oct 29th 2017 Modified the schedule for 2017/2018. RvR

0.09 Dec 22nd 2016 Minor clarifications and fixed typos. RvR

0.08 Nov 30th 2016 Fixed deadlines in Table 4. Added link to Cornell guidelines
on “how to prepare an annotated bibliography”

RvR
AO

0.07 Nov 17th 2016 Added hints section to the annotated bibliography assignment. RvR
Updated the description of Series 1. AO

0.06 Nov 9th 2016 Added online test to Series 0 and added this change log. RvR

0.01 Oct 31st 2016 Created this document based on the work of Paul Klint, Jurgen
Vinju, Magiel Bruntink and Vadim Zaytsev.

RvR

Table 9: Change Log

21

References

[1] M. Alanen and I. Porres. “Difference and Union of Models”. In: «UML» 2003
- The Unified Modeling Language. Modeling Languages and Applications –
Proceedings of the 6th International Conference, San Francisco, CA, USA,
October 20–24, 2003. Ed. by P. Stevens, J. Whittle, and G. Booch. Vol. 2863.
LNCS. Springer, 2003, pp. 2–17. isbn: 978-3-540-45221-8. doi: 10.1007/
978-3-540-45221-8_2.

[2] S. Baars and S. Meester. “CodeArena: Inspecting and Improving Code Qual-
ity Metrics using Minecraft”. In: Proceedings of the 2nd International Con-
ference on Technical Debt, TechDebt@ICSE 2019, Montreal, QC, Canada,
May 26–27, 2019. Ed. by P. Avgeriou and K. Schmid. IEEE, 2019, pp. 68–
70. doi: 10.1109/TechDebt.2019.00023.

[3] R. Baggen, J. P. Correia, K. Schill, and J. Visser. “Standardized Code Quality
Benchmarking for Improving Software Maintainability”. In: Software Quality
Journal 20.2 (June 2012), pp. 287–307. issn: 1573-1367. doi: 10.1007/
s11219-011-9144-9.

[4] V. and Basili, G. Caldiera, and H. D. Rombach. “Encyclopedia of Soft-
ware Engineering”. In: Wiley, 2002. Chap. Goal Question Metric (GQM)
Approach. isbn: 9780471028956. doi: 10.1002/0471028959.sof142.

[5] S. Erdweg, T. van der Storm, M. Völter, M. Boersma, R. Bosman, W. R.
Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. D. P. Konat, P. J.
Molina, M. Palatnik, R. Pohjonen, E. Schindler, K. Schindler, R. Solmi,
V. A. Vergu, E. Visser, K. van der Vlist, G. H. Wachsmuth, and J. van der
Woning. “The State of the Art in Language Workbenches: Conclusions from
the Language Workbench Challenge”. In: Software Language Engineering –
Proceedings of the 6th International Conference, SLE 2013, Indianapolis, IN,
USA, October 26–28, 2013. Ed. by M. Erwig, R. F. Paige, and E. Van Wyk.
Vol. 8225. LNCS. Springer, 2013, pp. 197–217. isbn: 978-3-319-02654-1. doi:
10.1007/978-3-319-02654-1_11.

[6] N. Fenton. “Software Measurement: A Necessary Scientific Basis”. In: IEEE
Transactions on Software Engineering 20.3 (Mar. 1994), pp. 199–206. issn:
0098-5589. doi: 10.1109/32.268921.

[7] A. Hamid and V. Zaytsev. “Detecting Refactorable Clones by Slicing Pro-
gram Dependence Graphs”. In: Post-proceedings of the Seventh Seminar on
Advanced Techniques and Tools for Software Evolution, SATToSE 2014,
L’Aquila, Italy, July 9–11, 2014. Ed. by D. di Ruscio and V. Zaytsev. Vol. 1354.
CEUR Workshop Proceedings. CEUR-WS.org, 2014, pp. 37–48. url: http:
//ceur-ws.org/Vol-1354/paper-04.pdf.

[8] A. Hanjalic. “ClonEvol: Visualizing Software Evolution with Code Clones”.
In: Proceedings of the First IEEE Working Conference on Software Visual-
ization. IEEE, 2013, pp. 1–4. doi: 10.1109/VISSOFT.2013.6650525.

22

https://doi.org/10.1007/978-3-540-45221-8_2
https://doi.org/10.1007/978-3-540-45221-8_2
https://doi.org/10.1109/TechDebt.2019.00023
https://doi.org/10.1007/s11219-011-9144-9
https://doi.org/10.1007/s11219-011-9144-9
https://doi.org/10.1002/0471028959.sof142
https://doi.org/10.1007/978-3-319-02654-1_11
https://doi.org/10.1109/32.268921
http://ceur-ws.org/Vol-1354/paper-04.pdf
http://ceur-ws.org/Vol-1354/paper-04.pdf
https://doi.org/10.1109/VISSOFT.2013.6650525

[9] I. Heitlager, T. Kuipers, and J. Visser. “A Practical Model for Measuring
Maintainability”. In: Quality of Information and Communications Technol-
ogy, 2007. QUATIC 2007. 6th International Conference on the. 2007, pp. 30–
39. doi: 10.1109/QUATIC.2007.8.

[10] M. Hermansdörfer and G. Wachsmuth. “Evolving Software Systems”. In: ed.
by T. Mens, A. Serebrenik, and A. Cleve. Springer, 2014. Chap. 2. Coupled
Evolution of Software Metamodels and Models, pp. 33–63. isbn: 978-3-642-
45398-4. doi: 10.1007/978-3-642-45398-4.

[11] I. Herraiz, D. Rodriguez, G. Robles, and J. M. Gonzalez-Barahona. “The
Evolution of the Laws of Software Evolution: A Discussion Based on a Sys-
tematic Literature Review”. In: ACM Comput. Surv. 46.2 (Dec. 2013), pp. 1–
28. issn: 0360-0300. doi: 10.1145/2543581.2543595.

[12] J. Jansen, A. Oprescu, and M. Bruntink. “The Impact of Automated Code
Quality Feedback in Programming Education”. In: Proceedings of the Semi-
nar Series on Advanced Techniques and Tools for Software Evolution, SAT-
ToSE 2017, Madrid, Spain, June 7–9, 2017. Vol. 2070. CEUR Workshop
Proceedings. CEUR-WS.org, 2017. url: http://ceur-ws.org/Vol-2070/
paper-04.pdf.

[13] C. Kapser and M. W. Godfrey. “"Cloning Considered Harmful" Considered
Harmful”. In: 2006 13th Working Conference on Reverse Engineering. Oct.
2006, pp. 19–28. doi: 10.1109/WCRE.2006.1.

[14] P. Klint, T. v. d. Storm, and J. Vinju. “RASCAL: A Domain Specific Lan-
guage for Source Code Analysis and Manipulation”. In: Proceedings of the
2009 Ninth IEEE International Working Conference on Source Code Anal-
ysis and Manipulation, SCAM 2009, Edmonton, AB, Canada, September
20–21, 2009. IEEE, 2009, pp. 168–177. isbn: 978-0-7695-3793-1. doi: 10.
1109/SCAM.2009.28.

[15] P. Klint, T. van der Storm, and J. Vinju. “EASY Meta-programming with
Rascal”. In: Generative and Transformational Techniques in Software Engi-
neering III: International Summer School, GTTSE 2009, Braga, Portugal,
July 6–11, 2009. Revised Papers. Ed. by J. M. Fernandes, R. Lämmel, J.
Visser, and J. Saraiva. Springer, 2011, pp. 222–289. isbn: 978-3-642-18023-
1. doi: 10.1007/978-3-642-18023-1_6.

[16] P. Klint, T. van der Storm, and J. Vinju. “Rascal, 10 Years Later”. In:
2019 19th International Working Conference on Source Code Analysis and
Manipulation (SCAM). 2019, pp. 139–139. isbn: 978-1-7281-4937-0. doi: 10.
1109/SCAM.2019.00023.

[17] R. Koschke. “Software Evolution”. In: ed. by T. Mens and S. Demeyer.
Springer, 2008. Chap. 2. Identifying and Removing Software Clones, pp. 15–
36. isbn: 978-3-540-76440-3. doi: 10.1007/978-3-540-76440-3.

[18] D. Landman, A. Serebrenik, E. Bouwers, and J. J. Vinju. “Empirical Anal-
ysis of the Relationship between CC and SLOC in a Large Corpus of Java
Methods and C Functions”. In: Journal of Software: Evolution and Process
28.7 (Dec. 2015). Special Issue Paper, pp. 589–618. doi: 10.1002/smr.1760.

23

https://doi.org/10.1109/QUATIC.2007.8
https://doi.org/10.1007/978-3-642-45398-4
https://doi.org/10.1145/2543581.2543595
http://ceur-ws.org/Vol-2070/paper-04.pdf
http://ceur-ws.org/Vol-2070/paper-04.pdf
https://doi.org/10.1109/WCRE.2006.1
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1007/978-3-642-18023-1_6
https://doi.org/10.1109/SCAM.2019.00023
https://doi.org/10.1109/SCAM.2019.00023
https://doi.org/10.1007/978-3-540-76440-3
https://doi.org/10.1002/smr.1760

[19] D. Landman, A. Serebrenik, and J. J. Vinju. “Empirical Analysis of the Re-
lationship between CC and SLOC in a Large Corpus of Java Methods”. In:
30th IEEE International Conference on Software Maintenance and Evolu-
tion, ICSME 2014, Victoria, BC, Canada, September 29–October 3, 2014.
2014, pp. 221–230. isbn: 978-1-4799-6146-7. doi: 10.1109/ICSME.2014.44.

[20] N. Lodewijks. “Analysis of a Clone-and-Own Industrial Automation System:
An Exploratory Study”. In: Proceedings of the Seminar Series on Advanced
Techniques and Tools for Software Evolution, SATToSE 2017, Madrid, Spain,
June 7–9, 2017. Vol. 2070. CEUR Workshop Proceedings. CEUR-WS.org,
2017. url: http://ceur-ws.org/Vol-2070/paper-05.pdf.

[21] T. Mens. “Software Evolution”. In: ed. by T. Mens and S. Demeyer. Springer,
2008. Chap. 1. Introduction and Roadmap: History and Challenges of Soft-
ware Evolution, pp. 2–11. isbn: 978-3-540-76440-3. doi: 10.1007/978-3-
540-76440-3.

[22] H. Murakami, Y. Higo, and S. Kusumoto. “ClonePacker: A Tool for Clone
Set Visualization”. In: Proceedings of the 22nd International Conference on
Software Analysis, Evolution and Reengineering. Ed. by Y.-G. Gueheneuc,
B. Adams, and A. Serebrenik. IEEE, 2015, pp. 474–478. isbn: 978-1-4799-
8469-5. doi: 10.1109/SANER.2015.7081859.

[23] D. Rattan, R. Bhatia, and M. Singh. “Software Clone Detection: A Sys-
tematic Review”. In: Information and Software Technology 55.7 (July 2013),
pp. 1165–1199. issn: 0950-5849. doi: 10.1016/j.infsof.2013.01.008.

[24] C. K. Roy, M. F. Zibran, and R. Koschke. “The Vision of Software Clone
Management: Past, Present, and Future (Keynote paper)”. In: Software Main-
tenance, Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Soft-
ware Evolution Week - IEEE Conference on. Feb. 2014, pp. 18–33. doi:
10.1109/CSMR-WCRE.2014.6747168.

[25] C. K. Roy, J. R. Cordy, and R. Koschke. “Comparison and Evaluation of
Code Clone Detection Techniques and Tools: A Qualitative Approach”. In:
Sci. Comput. Program. 74.7 (May 2009), pp. 470–495. issn: 0167-6423. doi:
10.1016/j.scico.2009.02.007. url: http://dx.doi.org/10.1016/j.
scico.2009.02.007.

[26] R. van Rozen and Q. Heijn. “Measuring Quality of Grammars for Procedural
Level Generation”. In: Proceedings of the 13th International Conference on
Foundations of Digital Games, FDG 2018, as part of the 9th Workshop on
Procedural Content Generation, PCG 2018, Malmö, Sweden, August 7–10,
2018. ACM, 2018, pp. 1–8. doi: 10.1145/3235765.3235821.

[27] R. van Rozen and T. van der Storm. “Toward Live Domain-Specific Lan-
guages: From Text Differencing to Adapting Models at Run Time”. In:
Software & Systems Modeling 18.1 (Feb. 2019). Special Section Paper on
STAF2015. Received June 27th 2016. Revised May 26th 2017. Accepted June
20th 2017. First Online August 14th 2017, pp. 195–212. issn: 1619-1374. doi:
10.1007/s10270-017-0608-7.

24

https://doi.org/10.1109/ICSME.2014.44
http://ceur-ws.org/Vol-2070/paper-05.pdf
https://doi.org/10.1007/978-3-540-76440-3
https://doi.org/10.1007/978-3-540-76440-3
https://doi.org/10.1109/SANER.2015.7081859
https://doi.org/10.1016/j.infsof.2013.01.008
https://doi.org/10.1109/CSMR-WCRE.2014.6747168
https://doi.org/10.1016/j.scico.2009.02.007
http://dx.doi.org/10.1016/j.scico.2009.02.007
http://dx.doi.org/10.1016/j.scico.2009.02.007
https://doi.org/10.1145/3235765.3235821
https://doi.org/10.1007/s10270-017-0608-7

[28] M.-A. D. Storey, F. D. Fracchia, and H. A. Müller. “Cognitive Design El-
ements to Support the Construction of a Mental Model during Software
Exploration”. In: Journal of Systems and Software 44.3 (1999), pp. 171–185.
issn: 0164-1212. doi: 10.1016/S0164-1212(98)10055-9.

[29] J. Visser, S. Rigal, R. van der Leek, P. van Eck, and G. Wijnholds. Building
Maintainable Software, Java Edition: Ten Guidelines for Future-Proof Code.
1st ed. O’Reilly, 2016. isbn: 9781491953525.

[30] L. Voinea and A. C. Telea. “Visual Clone Analysis with SolidSDD”. In: Pro-
ceedings of the Second IEEE Working Conference on Software Visualization.
IEEE, 2014, pp. 79–82. doi: 10.1109/VISSOFT.2014.22.

[31] V. Zaytsev. “Software Language Engineers’ Worst Nightmare”. In: Proceed-
ings of Software Language Engineering 2020 (SLE 2020). Nov. 2020. doi:
10.1145/3426425.3426933.

25

https://doi.org/10.1016/S0164-1212(98)10055-9
https://doi.org/10.1109/VISSOFT.2014.22
https://doi.org/10.1145/3426425.3426933

	Course Overview
	Goals
	Course Material
	Required Course Activities
	Grading

	Evaluation
	Course Schedule
	Reading

	Assignments
	Change Log

