
Live Game Design: Prototyping at the Speed of Play
Riemer van Rozen

rozen@cwi.nl
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

Abstract
Automated GameDesign empowers game designers with languages,
techniques and tools that automate iterative design processes. How-
ever, these tools currently lack suitable input and feedback mecha-
nisms for creating rules and perceiving how changes affect running
game prototypes. As a result, iterating takes too long, forming
mental models about cause-and-effect relationships is difficult, and
learning how to program can be tedious and frustrating. We investi-
gate how Live Programming can accelerate game design iterations,
make visual tools more accessible and engaging, and provide im-
mediate feedback that brings code to life. We propose Live Game
Design, a novel approach for rapid game prototyping that intro-
duces mini-cycles to help designers of all skill levels explore, learn,
and see a prototype come alive. We introduce Vie (pronounced /vi/),
a game-making game for simultaneously prototyping and playtest-
ing simple 2D games using Machinations. In an observational study,
we evaluate the app during a Game-Based Learning tutorial for
children aged 8 to 14. Our results show Vie is accessible to novices
and Live Game Design enables prototyping at the speed of play.

CCS Concepts
• Software and its engineering → Domain specific languages;
Integrated and visual development environments; • Applied
computing → Computer games.

Keywords
automated game design, live programming, gamemechanics, mixed-
initiative design, prototyping, playtesting, game-based learning

1 Introduction
Game development depends on game design, an inherently complex,
iterative process focused on improving a game’s quality [35]. At the
core of a game’s design are game mechanics, the interactive rules
that bring about gameplay, experiences such as enjoyment and
learning. These rules often describe game-economic mechanisms
that determine how players can collect, spend and exchange in-
game resources such as coins, crystals or apples [1]. Game designers
rely on rapid prototyping for effective playtesting, often using
“cardboard prototypes”, to quickly improve the gameplay [11]. For
designers, the challenge is to deliver high-quality results within
restricted development timelines and limited budgets.

Automated Game Design (AGD) studies how to empower de-
signers with Domain-Specific Languages (DSLs), techniques and
tools that help automate game design processes [6, 45]. Various
solutions have been proposed for improving a game’s parts, e.g.,
mechanics [18], levels [21], missions, stories, and virtual worlds.
Mixed-initiative approaches leverage state-of-the-art algorithms to
help explore design spaces and generate content procedurally [19].

Design experts can leverage these tools to express rules, balance
strategies, and predict behaviors with mathematical precision.

Unfortunately, the usability of prototyping tools still leaves much
to be desired. Unlike cardboard prototypes, software prototypes
are not tangible, easily adjustable, or immediately playable. Many
tool formalisms are difficult to learn and hard to master, especially
for novices. The large abstraction gap prevents users from intu-
itively grasping how the rules work. Translating complex designs
into working game systems is therefore time-consuming and error-
prone, and often leads to loss of design intent. As designs evolve,
they rapidly grow too large to comprehend. As Raph Koster once
put it: “a game design should fit on the back of a napkin” [17].

Accessible design tools, referred to as casual creators, have intro-
duced specialized notations for rapidly exploring particular design
spaces [4], e.g., board games [7], 2D physics games [12, 18], and
procedural imagery and poetry [5]. However, tools that support
continuous prototyping and playtesting are not yet available [7, 45].
Modifying rules typically requires recompiling and restarting the
game, resulting in the loss of valuable game states. Existing pro-
totyping tools lack suitable input and feedback mechanisms for
making gradual changes, perceiving behavioral effects, and evaluat-
ing their impact on running game prototypes. As a result, iterating
is slow, forming mental models about cause-and-effect relationships
is hard, and learning how to program can be tedious and frustrating.

We investigate how Live Programming can accelerate game de-
sign iterations, make visual tools more accessible and engaging,
and provide immediate feedback that brings code to life [30, 39].
Our focus is on Machinations, a visual language for expressing
game economies that has been well-studied, validated and applied
in academia, industry and education [1, 9]. We employ design re-
search, an iterative research method for advancing the state of
the art, validating theories, and evaluating practical solutions with
its users [13]. We propose Live Game Design, a novel approach
for rapid game prototyping that introduces mini-cycles to help de-
signers of all skill levels explore, learn, and see a prototype come
alive. We introduce Vie (pronounced /vi/), a game-making game
for simultaneously prototyping and playtesting simple 2D games
using Machinations. Vie is powered by Cascade, a meta-language
for change, cause and effect [46]. It builds on a prior evaluation of
Godot for creating visual live programming environments [47]. To
evaluate the app, we conduct an observational study that applies
Vie in a Game-Based Learning tutorial for children aged 8 to 14.
Our results show Vie is accessible to novices and Live Game Design
enables prototyping at the speed of play. This paper contributes:

(1) Live Game Design, a novel approach and a set of tool design
principles for continuous prototyping and playtesting.

(2) Vie: a live game design tool for simultaneous prototyping and
playtesting simple 2D games using Machinations.

https://orcid.org/0000-0002-3834-682X


FDG ’25, April 15–18, 2025, Graz, Austria Riemer van Rozen

(a) Vie (b) Bunnies (c) Apples (d) Heart

Figure 1: Game elements

2 Machinations
To introduce Machinations, we begin with its historical context,
and a tutorial suitable for non-programmers, novices, and children.
This tutorial serves as a simple motivating example that illustrates
the main challenges we aim to address with Live Game Design. In
Section 3, we will relate the needs of designers to challenges and
objectives. Section 8 discusses related work in a broader context.

2.1 Background
Machinations is a visual notation and a conceptual game design
aid [1, 9]. By foregrounding elemental feedback loops associated
with emergent gameplay, designers can prototype howmechanisms
work before a game is built. Over the years, Machinations has been
applied in research, education and practice, resulting in university
courses and industrial case studies. Dormans’ initial tool from 2009,
which was Flash-based, has been highly prized for its usability,
and can still be found on online forums [10]. In 2020, start-up
machinations.io reports over 23K users for its cloud service [40].

Micro-Machinations is a programming language that addresses
key technical shortcomings of its evolutionary predecessor. For over
a decade, we have collaborated with Dutch indie game develop-
ers on tools and techniques for game development [50], predictive
analysis [16] and content generation [44]. Micro-Machinations has
introduced a live programming approach that accelerates game
design processes [50]. This approach proposes an embeddable inter-
preter to power the internal economies of digital games. Designers
can simultaneously prototype and playtest mechanisms inside run-
ning games. In our most recent efforts, we investigate how game en-
gine technology can be leveraged to create visual Domain-Specific
Languages for live and exploratory programming [47]. Vie, the tool
described in this paper, continues this branch of research.

2.2 Tutorial
We introduce Vie using a tutorial suitable for novices and children.
To ensure no prior coding skills are needed, we usemarble machines
as a game design metaphor. In this metaphor, a game designer
creates the marble machine, and decides where the marbles can roll.
By introducing places, paths, chutes, and levers, the designer offers
the player mechanisms to collect, spend and trade marbles.

There are two assignments. The first introduces design principles
step by step, demonstrating how Live Game Design works through
reproducible mini-iterations. The second is free-form, encouraging
self-exploration, similar to a rapid game jam [12]. Instead of a
live demo, we provide the English version of the handout [48].
In Section 6, we will revisit this tutorial in an observational study.

1

Vie Leave

(a) Rules after Step 2

1

VieEnter Leave

(b) Rules after Step 3

Figure 2: The first versions of the rules

Live Game Design: You Make the Rules
Designing games is difficult and time-consuming. To speed up and
simplify the design process, we have developed the Vie app [49].
Vie is a visual programming language for quickly creating 2D game
prototypes. After a brief introduction, you can create your own
game rules and instantly see your ideas come to life. To get you
started, you receive assignments and a handy cheat sheet (Appen-
dix A). There are two assignments, an easy one and a difficult one.
We use the Machinations language to express the rules [1]. Using
its notation, we create a marble machine that works inside a game.

Assignment 1: Vie and her Bunny
We begin with an example about a girl who lost her bunny. Her
name is Vie, just like the app. Figure 1 shows images: Vie, Bunnies,
Apples and Heart. Step by step, we will use these elements in the
game’s design. You can play the game immediately.

Step 1: Vie joins in the game
Step 1.1. Goal.We begin by adding Vie to the game.

Action. Start the Vie app. Below Machinations (top left) you can
see a circle. Drag the circle and drop it on the center of the screen.

Result. There is now a circle on the screen. In Machinations,
this is called a pool. It is a place where resources (marbles) can be
stored. If there is a marble inside, it means Vie is there.

Step 1.2. Goal.We will make sure that there is just one Vie.
Action. You can use the Node Editor (bottom left) to adjust the

pool. Set the values of the At and Max fields to 1.
Result.When you click in the UI Design or Game tabs, you will

see that a Sprite (a picture) and a Label (name and value) have been
added. When Vie is there, you will see her picture.

Step 2: Vie leaves for a moment
Step 2.1. Goal.We add a rule called Leave for “going away”.

Action. BelowMachinations (top left) you can also see a triangle
that points down. Drag and drop the triangle to the right of Vie. In
the Node Editor (bottom left), set the value of When to “User”. The
Leave rule will become an interactive button in the game.

Result. There is now a triangle on the screen called a drain. This
is a place where marbles can disappear. From its double lines, you
can tell that Leave is an interactive game element.

Step 2.2. Goal. Marbles need a path to roll along. We will add a
connection so Vie can leave.

Action. Click on the dot on the right of the Vie pool, and connect
the line with the dot on the left of the Leave drain.

Result. There is now a line between Vie and Leave. This is called
a resource connection. The rules now appear like Figure 2a. We have



Live Game Design: Prototyping at the Speed of Play FDG ’25, April 15–18, 2025, Graz, Austria

added the blue elements in Step 2. A Leave Button has also been
added. If you click that button in the UI Design or Game tabs, Vie
will go away. You can try it out.

Step 3: Vie returns on stage
Step 3.1. Goal.We will add an Enter rule for “returning”.

Action. Below Machinations (top left) there is also a triangle
that points up. Drag this triangle and drop it to the left of Vie. In
the Node Editor, set When to “User”. This also adds a button.

Result. There is now a second triangle on the screen. This is
called a source, a place where marbles can come from. From its
double lines, you can tell Enter is an interactive source.

Step 3.2. Goal.We will add a connection that lets Vie return.
Action. Click on the dot on the right side of the Enter source,

and connect the line with the dot left of the Vie pool.
Result. There is now a line between Enter and Vie, another

resource connection. The rules now appear as in Figure 2b. We
have added the blue elements in Step 3. If you click on the Enter
button in the UI Design or Game tabs, Vie will return. Try it out.

Step 4: Vie always brings an apple
Step 4.1. Goal.We will now add Apples to the game.

Action. We again start with Machinations (top left). Drag an-
other circle to a good spot on the screen, e.g., below Enter.

Result. There is now a second pool on the screen. If there are
marbles in this spot, these are Apples. A Sprite and a Label have
been added in the UI Design and Game tabs.

Step 4.2. Goal. Every time Vie returns, she brings an apple.
Action. Click on the dot on the right side of the Enter source,

and connect the line with the dot on the left side of the Apples pool.
Next, click on the Enter source. In the Node Editor, set the value of
How to “All” to ensure Vie only brings an Apple when she returns.

Result. There is now a resource connection between Enter and
Apples. If you now click on the Enter button in the UI Design or
Game tabs, then Vie brings an apple when she returns. Try it out.

Step 5: Vie swaps the apples for her bunny
Luckily, Vie can get her bunny back for exactly four apples.

Step 5.1. Goal.We will add Bunnies to the game.
Action. We again start with Machinations (top left). Drag an-

other circle and drop it in suitable place on the screen. In the Node
Editor, adjust the value of Max to 1 so there can only be one bunny.

Result. There is another pool on the screen. When there are
marbles inside, these are Bunnies. In the UI Design and Game tabs,
a Sprite and a Label have been added to see them.

Step 5.2. Goal.We will add a Swap rule and a Swap button.
Action. BelowMachinations you can also see a triangle pointing

to the right with a vertical line through it. Drag it to a suitable spot.
Result. There is now a new element on the screen. Swap is a

converter. Converters can exchange one kind of resource (marbles)
for another kind. Because converters are interactive, a Button has
also been added in the UI Design and Game tabs that activates it.

Step 5.3. Goal.We add that the bunny costs four apples.

1

Vie

Heart

0

0

Apples Swap Bunnies

0
4

Enter

&

Leave

Figure 3: A complete version of the rules

Action. Add a resource connection between Apples and Swap.
Click just above the connection, and enter amount 4.

Result. The new source connection indicates that the cost of
trading is 4 apples. However, swapping has no benefit yet.

Step 5.4. Goal.We add that for swapping we get the bunny.
Action. Add a connection between Swap and Bunnies.
Result. Nowwe can exchange apples for the bunny. Click on the

Swap converter, or on the Swap button in the UI Design or Game
tabs. If you have enough apples you will get the bunny.

Step 6: Happily ever after – or something else!
A game is never completely finished, not even Figure 3. Add rules
yourself and try them out. Let a Heart appear, or make up rules
about Bananas or Cows. Maybe they’re hungry!

Assignment 2: Climate Change
You can also design complex games with Vie. In this exercise you
will make an educational game about climate change.

Goal. Design a game using the elements: Heat, Factories, Trees
and CO2. What can you do to prevent global warming?

Action Click Menu, select theme “The Climate” and click Done.
Design rules and try them out. Tip: discuss and play!

Example. You can also load an example. Click Menu, select
“2. The Climate”, and click Load. This is not a very fun game yet.
Can you make better rules for improving it?

3 Problem Overview
We relate the needs of novice game designers to research challenges
and opportunities. To shed light on the problem, we examine re-
search areas with distinct perspectives on how related challenges,
objectives and approaches can contribute to a generic solution.

3.1 Automated Game Design
Automated Game Design is a research area that studies how to
empower game designers with languages, techniques and tools that
offer an increased expressive power over a game’s mechanisms.
Using these tools, design experts can create software prototypes
and obtain feedback with mathematical accuracy [6, 25, 45].

However, Automated Game Design is no silver bullet for creating
better games more quickly. Cardboard prototyping and software
prototyping are usually nothing alike. Creating software prototypes
adds technical complexity. As a result, the design iterations take
too much time. The main reasons, illustrated by Figure 4, are:



FDG ’25, April 15–18, 2025, Graz, Austria Riemer van Rozen

Designer

Gameplay
Objectives

?
=

Game
Design

Cardboard
Prototype

Player

Gameplay
Experiences

emerge

interact

hypothesize

create

(a) Cardboard prototyping is fast
but lacks mathematical accuracy

Aesthetics
Feedback

Gameplay
Design

Playtesting

Cardboard
Prototype

So󰎗ware
Prototype

Production
Coding

1. translate

2. change

3. assess impact

4. restart

create

enable

obtaininform

(b) Software prototyping is precise
but design iterations are too slow

Figure 4: Game design requires prototyping and playtesting

(1) Abstraction gap.Designers need to be able to express a game’s
mechanisms independently. However, the available formalisms
are too difficult to learn and understand. As a result, translating
designs into code is complex, time-consuming and error-prone.

(2) Lack of continuous change. Improving a prototype requires
constantly changing its mechanisms. However, changing how
the mechanisms of a running prototype work simply is not
possible. Many changes require updates to the user interface
to again make the prototype playable, which requires a restart.

(3) Lack of immediate feedback. Designers need immediate
feedback to form mental models, and learn cause and effect
relationships. However, they lack a means for assessing the
behavioral impact of changes on running prototypes.

(4) Interrupted playtesting. The playtesting process halts every
time a digital prototype needs to be recompiled and restarted.
Designers lose the valuable run-time state in the process.

In this paper, we aim to address these challenges. We introduce
Vie, a tool for prototyping and playtesting simultaneously. Our
approach combines Game-Based Learning with Live Programming.

3.2 Game-Based Learning
Game-Based Learning is an area that studies how to leverage games
to teach subject matter [29]. Using applied games (or serious games),
educators can offer gamified experiences that help learners acquire
skills in a fun and exploratory manner [28]. Like game design itself,
learning how to create digital game prototypes is an iterative pro-
cess that hinges on feedback [35]. Facilitating the learning process
is complex because dedicated teaching tools are still mostly missing.
In particular, the following challenges remain unaddressed.
(1) Game designmetaphor.Designers, like novices and children,

are often non-programmers who lack mental models about the
relationships between code and play. Acquiring new skills is
difficult due to a lack of suitable abstractions that appeal to the
imagination. For bridging the abstraction gap (Challenge 1),
learners need a powerful metaphor for game design.

(2) Educational programming environments. To acquire new
skills, learners need to engage with the subject matter. How-
ever, educators lack a means to create design spaces learners

Mind

Senses

UI

System

Figure 5: Feedback loops drive Human-Computer Interaction
(adapted from van Rozen [46])

can safely explore. They lack tools for creating interactive
tutorials and coding exercises for learning with trial and error.

In this paper, we investigate how to create a game-making game
that addresses these challenges. Our objective is to support educa-
tors and learners with an educational programmable environment
for creating interactive tutorials and exploring programmable de-
sign spaces. The tutorial of Section 2 exemplifies our objectives
and introduces marble machines as a game design metaphor. It
illustrates a style of programming that explicitly relates gameplay
goals to coding actions, and immediately playable results. Each step
is a mini-cycle that offers learners opportunities to learn, construct
mental models, and see the subject matter come alive. To introduce
these cycles, we investigate how to leverage Live Programming.

3.3 Live Programming
Live Programming caters to the needs of programmers by providing
immediate feedback about the effect of changes to the code [30, 39].
Our objective is to combine Live Programming with Automated
Game Design in a novel approach called Live Game Design. The
tutorial scenario of Section 2 illustrates key requirements a live
programming environmentmust fulfill to cater to a designer’s needs.

Like all of Human-Computer Interaction, programming is driven
by feedback loops [27]. Figure 5 illustrates this. However, prototyp-
ing and playtesting are two distinct but interdependent loops. We
aim to integrate them in a single programming environment for:

(1) Prototyping. Realize intentions by interacting with: a) input
mechanisms for performing the effects of coding actions; and
b) feedback mechanisms that display changes for perceiving
those effects, and evaluating if actions were successful.

(2) Playtesting. Assess gameplay with input and feedback mech-
anisms for performing and evaluating player actions.

Next, we will describe Live Game Design, our solution proposal
for addressing these challenges.

4 Live Game Design
We propose Live Game Design, a combination of Automated Game
Design and Live Programming that empowers designers with lan-
guages and tools for prototyping and playtesting simultaneously.
The main idea behind our approach is seamlessly integrating these
activities and accelerating the feedback loops. Figure 6 illustrates
how both loops are integrated into a single design environment.



Live Game Design: Prototyping at the Speed of Play FDG ’25, April 15–18, 2025, Graz, Austria

Mind

Senses

UI/System

Senses

Mind

Gameplay
Objectives

Mental Model
+ Insights

Designer
designs mechanisms

Player
uses mechanisms

Coding
Actions

Coding
Feedback

Changes
Running Game

Prototype E󰎎ects
process generate

perform display

informs

augments

helps form

Player
Actions

Mechanics
Feedback

Gameplay
Experiences

Mental Model
+ Insights

perform display

informs

contribute to

helps form

Figure 6: Live Game Design integrates prototyping (top) and
playtesting (bottom) cycles with input and feedback mecha-
nisms that provide immediate feedback about the incremen-
tal effects of coding and player actions on each other

4.1 Design Principles
In a Live Game Design process, each step is a mini-cycle designed
to explore, learn, and see a prototype come alive. To introduce these
mini-cycles, we propose principles of Live Game Design. We follow
the design research methodology [13], informed by the state-of-
the-art in game design tools [45], and insights from Cognitive Load
Theory [24, 43]. In Sections 5 and 6, we iteratively validate, evaluate,
and refine the descriptions. We propose the following principles:

P1 Observable effect. An action results in observable effects and
yields informative feedback whenever possible.

P2 Immediate feedback. Feedback on an action is always im-
mediate to preserve the integrity of a mini-cycle.

P3 Learnable meaning. Every action has a predictable and ulti-
mately learnable effect governed by the language semantics.

P4 Meaningful change. Every interaction, for play or design,
results in a meaningful change that feeds into the next cycles.

P5 Continuous processes.Design activities, such as prototyping
and playtesting, are continuous and uninterrupted processes.

P6 Universal playability. Designs and prototypes are always
playable. Instead of compile- or run-time, now is the only time.

P7 Minimalist design. Tools offer a minimal set of elements and
features that focus activities and reduce the cognitive load.

P8 Ongoing discovery. Uninformed actions result in effects and
feedback that support learning. There is no right or wrong.

P9 Moldable design. Changes to a game design are free-form.
The results are sculptable and moldable artistic expressions.

P10 Formal semantics. Domain-Specific Languages (DSLs) span
well-defined game design spaces that can freely be explored.

P11 Generic tool. A generic tool supports making changes for
exploring these design spaces in any direction.

P12 Specific themes. Specific design themes that focus the design
space exploration are a means to introduce subject matter.

P13 Captivating examples. Educational design themes empower
novices and learners with recognizable examples that help
them engage, e.g., a lost bunny or climate change.

Next, we design a tool to validate and evaluate of these principles.

5 Vie: A Tool for Live Game Design
We introduce Vie (pronounced /vi/), a novel tool for creating 2D
game prototypes using Machinations. We formulate requirements,
explain the main design decisions, and describe its implementation.

5.1 Requirements
Based on prior studies, workshops, and experiences, we formulate
the following functional requirements. These extend an earlier ver-
sion that appeared as part of a pilot study, a positive suitability anal-
ysis of Godot for creating visual programming environments [47].

5.1.1 Game Mechanics. Designers need to prototype game me-
chanics before assessing the gameplay. They require an editor to
flexibly design, modify, and test the dynamics of game-economic
mechanisms. The editor offers a dedicated view that lets designers:
R1 Create diagrams by adding nodes and edges on a canvas, by

moving elements, and zooming in and out.
R2 Modify and edit node properties: name, type, behavior mod-

ifiers (when, act, how), and for pools only: its starting (start)
and maximum (max) amounts.

R3 Modify the flow rate of a resource connection by modifying
its expression. The default (no expression) is one. Adjustments
enable whole amounts (4), pool references (Apples), and com-
posite clauses with multiplication, division, addition and sub-
traction ((Apples*2)-1).

R5 Observe visual feedback about the success of nodes triggers
and the flow of resources in a diagram.

R6 Activate an interactive node to evaluate its effects.

5.1.2 UI Design. Designers need simple 2D user interfaces to make
the mechanics playable. They require an editor and a minimal set
of visual components for associating mechanisms with UI elements.
The editor enables them to design, place and move:
R7 Buttons that display a text and activate an interactive node.
R8 Labels that display a specified text and enable observing the

current amount of resources inside a pool node.
R9 Sprites that display an image indicating the current amount of

resources inside a pool node.

5.1.3 Interactive Game Simulation. For playtesting, designers and
players need a running game prototype. They need game simula-
tions that project the UI design, and enable them to:
R10 Press buttons for activating mechanisms.
R11 Perceive labels that show amounts textually.
R12 Perceive sprites that represent the game state visually.

5.1.4 Educational Themes. Educators require a means to introduce
subject matter, such as the lost bunny or climate change, into a
game’s design. To set educational parameters, and to help focus
exploratory design processes, educators need to:
R13 Create educational design themes that associate specified verbs

to the names of pools, sources drains and converters.



FDG ’25, April 15–18, 2025, Graz, Austria Riemer van Rozen

User Interface (front-end)

Mechanics
Editor

UI Design
Editor

Game
Interface

Mechanics
Bindings

UI Design
Bindings

Game
Bindings

Vie Intepreters (back-end)

Mechanics
Interpreter

UI Design
Interpreter

Game
Engine

Game
Interpreter

Mechanics
Model

UI Design
Model

Engine
State

Game
State

Figure 7: Vie: tool architecture and components

R14 Integrate a theme with the editors for creating mechanisms.
In addition, we formulate a non-functional requirement.
R15 Actions shall have an immediate effect. A response time of

100ms is regarded as instantaneous in HCI research [26].
Next, we explain how the language design realizes these functions.

5.2 Tool Architecture
The architecture of Vie adheres to theModel View Controller (MVC)
paradigm. Figure 7 shows an overview of its components. The
arrows denote event-driven communication between programs
(Model), UI components (View) and the interpreters (Controller).
Vie integrates three interconnected Domain-Specific Languages.

(1) Machinations: expresses internal game economies. Figure 8a
illustrates the textual storage format, and shows Step 5 of the
tutorial. The Mechanics Editor displays programs visually.

(2) UI Design: expresses visual 2D elements of a game. Figure 8b
shows the generated specification for the tutorial. Users edit
UI designs visually with the UI Design Editor.

(3) Design Themes: specify verbs and nouns that determine
the names of Machinations nodes, and focus the design pro-
cess. Figure 9 shows specifications of the lost bunny and the
climate change themes of the tutorial. These are omitted in
the diagram because an editor is still missing.

In addition, the Game Simulation displays a running game, en-
abling players to click buttons. In prior work, we have addressed
the challenge of creating a user interface [47]. Here we address the
challenge of supporting the principles of Live Game Design.

To introduce mini-cycles, we design and integrate so-called Read-
Eval-Print-Loop (REPL) interpreters. We create these using the
Cascade Meta-Language [46] and the C# version of the Godot game
engine [22]. Vie integrates four back-end interpreters:

(1) Mechanics Interpreter: evaluates changes to Machinations.
(2) UI Design Interpreter: evaluates changes to UI Designs.
(3) Game Engine: evaluates Machinations behaviors and runs

a single game simulation.
(4) Game Interpreter: maintains a game simulation view.
Cascade expresses DSLs and run-time transformations, and com-

piles to C#. The event-based runtime serves as a controller that

pool Vie at 1 max 1 @(1060, 180)
pool Apples @(620, 220)
pool Bunnies max 1 @(1440, 300)
user converter Swap @(1060, 420)
user all source Enter @(780, 20)
user drain Leave @(1380, 20)

Come : Enter --> Vie
Take : Enter --> Apples
Exit : Vie --> Leave
Cost : Apples -4-> Swap
Benefit : Swap --> Bunnies

(a) Machinations after Step 5

//Spec omits visual source locations

sprite on Vie shows Vie
label "Vie" on Vie
sprite on Apples shows Apples
label "Apples" on Apples
sprite on Bunnies shows Bunnies
label "Bunnies" on Bunnies

button "Swap" on Swap
button "Enter" on Enter
button "Leave" on Leave

(b) Generated UI Design spec

Figure 8: Domain-Specific Language storage formats

pools: Vie , Apples , Bunnies , Heart ,
Bananas , Cows

drains: Leave , Eat
sources: Enter , Give
converters: Swap , Exchange

(a) Lost Bunny theme

pools: Warmths , Trees , CO2 , Cows ,
Factories

drains: Cool , Chop , Demolish
sources: Heat , Plant , Build
converters: Produce , Absorb

(b) Climate Change theme

Figure 9: Domain-Specific Language for game design themes

manages the abstract syntax and the run-time states. The C# in-
terpreters have an event-driven design. They offer a scheduling
API for making gradual changes, e.g., for adding nodes or edges,
deleting them, or changing the type of a node. Next, we describe
how we introduce mini-cycles into the interpreters.

5.3 Language Design
The language design of Vie is based on the meta-models of Fig-
ures 10 and 11. These UML class diagrams show the structure
of the abstract syntax and the run-time states. Machinations pro-
grams, or Abstract Syntax Graphs (ASGs), are instances of the static
meta-model of Figure 10a. Run-time states, on the other hand, are
instances of the run-time meta-model of Figure 10b. UI designs are
instances of the static meta-model of Figure 11a. Game simulations
are instances of the run-time meta-model of Figure 11b.

5.3.1 Mini-cycles. The language design of Vie introduces mini-
cycles that offer designers opportunities to learn, construct mental
models, and see the subject matter come alive. When a designer
modifies the program, the interpreter migrates the run-time state
by updating current amounts of pool nodes. A publish-subscribe
mechanism allows registering external observers that trace events
and side-effects. When events happen, the interpreter notifies these
components that changes have occurred. The views update in re-
sponse. Next we describe the inter-dependent mini-cycles.

5.3.2 Mechanics Editor. Users can drag, drop, and reposition a
node from a palette onto a canvas whose type is pool, source, drain
or converter. Adding resource connections between nodes requires
connecting dots on the node boundaries (left is input and right is
output). Using the node editor to change the properties of a selected
node also updates its visual appearance and behavior.

5.3.3 Mechanics implement design themes. The currently loaded
game design theme determines which name a node receives. Every
time a name is used, the editor moves to the next one in the list.
This saves the designer the trouble of typing them in manually.

5.3.4 Mechanics remain intact. The Mechanics Editor maintains
the program integrity. Deleting a node also deletes all the edges



Live Game Design: Prototyping at the Speed of Play FDG ’25, April 15–18, 2025, Graz, Austria

ProgramElement
– name: String
– visible: bool

Edge Node

– type: NodeType

FlowEdge

– amount: int

Trigger

Behavior
– when: When
– act: Act
– how: How

Pool

– at: int
– max: int

Converter
– s: Node
– d: Node
– t: Trigger

Source

Drain

Engine

– change: bool

NodeInst
– triggered: bool
– amount: int

elements*

src

tgt

state
*

work
*

behavior

engines *

node

(a) Static meta-model of the abstract syntax

(b) Run-time
meta-model

Figure 10: Meta-model of Micro-Machinations (appears in
van Rozen [47])

connected to it. Changing a node name only works when the input
is of type string and not duplicate. Otherwise, the text becomes red.

Edge expressions can be modified by clicking just above an edge.
This reveals an input text field. Changing an edge expression only
works if the input parses, and all variable references can be resolved.
Otherwise, a tooltip shows the error, and the text becomes red.

5.3.5 Mechanics integrate a running simulation. One game simula-
tion always runs. We introduce the following mini-cycles between
the mechanics and the engine. Creating a pool gives it a current
amount; and changing the starting amount updates the current
amount. Deleting a pool removes its current amount.

Users can activate interactive nodes by clicking on them. The
diagram shows visual feedback when nodes: a) activate (blink yel-
low); b) succeed (blink green); c) fail (blink red); d) update pool
amounts (display current amount); and e) redistribute resources
along the resource connections of the diagram (edges blink green).

5.3.6 Mechanics make the UI design playable. We introduce the
following mini-cycles between the mechanics and the UI design.
Creating a pool node also creates a Sprite and a Label. Making
a node interactive also adds a Button. To reduce the perceived
distance, these elements are positioned in the UI design at the same
visual coordinates as their nodes in the mechanics view.

Deleting an interactive node (or changing its when modifier)
severs the connections with Buttons that refer to it. Deleting a pool
node severs connections with Labels and Sprites.

5.3.7 UI Design. Users can drag and drop a node from a palette
onto a canvas whose type is Button, Label or Sprite. Using an editor
on the left, they can modify the: a) associated interactive node of a
Button; b) associated pool node of a Label or Sprite; or c) text of a
Label; or toggle the visibility of an element in the game simulation.

UIDesign

– program: Program

UIElement
– node: Node
– loc: Location
– visible: bool

Label

– text: String

Sprite

– image: Image

Bu󰿣on

– text: String

elements

*

Game

– engine: Engine

Element

LabelInst SpriteInstBu󰿣onInst

elements *

bu󰿣on label sprite

ui

*

games

(a) UI Design:
the static meta-
model of the ab-
stract syntax

(b) Game: run-time meta-model

Figure 11: Meta-model of Vie: UI Design and Game packages

Figure 12: Mechanics Editor displaying the Lost Bunny ex-
ample, showing feedback after the Leave drain is activated

5.3.8 UI Design integrates a running simulation. Just like the me-
chanics, the UI design projects the running simulation. Pressing
a button activates its interactive node. Labels and sprites update,
showing a pool’s name and current amount textually, or visually.

5.3.9 Game simulation. The game simulation projects the UI de-
sign, but is not an editor. Creating, editing and repositioning ele-
ments in the UI design view updates the running game. Changing
the game mechanics updates the behavior.

The game engine always runs one game simulation. When a user
activates an interactive node, the engine evaluates the program until
the fixpoint computation completes. This computation generates
the run-time events shown in the other views.

5.4 Implementation
The implementation of Vie consists of three main parts: the front-
end editors, the back-end interpreters, and the bindings between
their APIs. The front-end includes the Mechanics Editor, the UI De-
sign Editor and the Game Simulator. Figures 12, 13 and 14 illustrate
these integrated views. To indicate the implementation effort, we



FDG ’25, April 15–18, 2025, Graz, Austria Riemer van Rozen

Figure 13: UI Design Editor showing the game state

Figure 14: Game Simulator projecting the running game

measure the code volume in Source Lines of Code (SLOC) using
cloc [8]. We created the editor scenes using Godot. The total vol-
ume of the tscn files is 2852 SLOC. The back-end interpreters are
compiled from a Cascade specification of 2605 SLOC. The resulting
engine is mainly generated, and consists of 32.9 KSLOC of C# code.
The bindings, written by hand, consist of 3330 SLOC of C#.

The Vie app (v0.0.7) is available for Windows, macOS and Linux
under the 2-clause BSD license [49]. Additionally, iOS and Android
versions are planned. We have tested the prototype, and it works
well on personal computers, laptops, tablets and mobile phones.

6 Observational Study
To evaluate Vie and assess the design principles we have formulated
in Section 4.1, we conduct an informal observational study. The
aim of the study is to perform an initial qualitative analysis about
how novices interact with Vie. Our objectives are to: 1) report ob-
servations; 2) reflect on successes and failures; 3) gain insights; and
4) make improvements. The results inform future design research.

6.1 Setup
We report on a workshop for children organized at the open day of
CentrumWiskunde & Informatica on two occasions. The workshop
took place between 12:00 and 17:00, continually offering sessions

of approximately 30 minutes. The goal was to convey this main
message: “programming is fun, can be visual too, and is for everyone.”

6.1.1 Focus group. Intended for Dutch kids between 8 and 14, the
workshop also welcomed younger kids and parents. Participants
were exceptionally talented, not a general subset of the population.

6.1.2 Activities. Using Vie, participants engaged in live and ex-
ploratory programming. After a brief introduction (10 minutes),
they received a demo (5 minutes), and tried the tutorial of Section 2.
We encouraged free exploration and having fun, like in a game jam.

6.1.3 Results. On October 7th 2023 and October 5th 2024, we
counted 30 and 60 participants. We made notes, but for privacy rea-
sons, we did not store programs. Next, we report our observations.

6.2 Observations
We have made the following noteworthy observations.

6.2.1 Beginners. Many kids experimented very quickly, filling the
screen with symbols in the blink of an eye. When asked about the
ideas behind the rules, their explanation was typically incomplete.
The nodes were all connected by resource connections, but the rules
only partially worked. Discussing the design, e.g., by explaining
that marbles can never flow from a drain, typically helped.

6.2.2 Prior experience. On both occasions, we observed several
kids could quickly create rules and play with them. When asked
about their prior experiences, most reported starting high school
and using Scratch [32]. They had a noticeable advantage.

6.2.3 Young children. On both occasions, we noticed several very
young participants, no more than four or five years old, with no
prior programming experience. One boy used a wheel mouse for
the first time. His father showed him how. Very determined, he man-
aged to create working rules. For the youngest ones, simply getting
the bunny to appear created a moment of pride and achievement.

6.2.4 Engaging design themes. We observed several groups having
vivid discussions among themselves about climate change. In three
cases, we observed girls changing the name of Vie into their own
name.Whenwe asked a participant what her aimwas, she explained
she wanted to move the image between places, and that this did
not work. We could help realize this. What prevented movement
was that pools are variables that cannot have identical names.

6.2.5 Saving and loading designs. Most of the participants played
for at least half an hour. In three cases, participants continued for
several hours, much to the frustration of their parents.

Only in these instances, where the designs represented signifi-
cant effort, participants asked to save them for later. Not once did a
participant ask why there was no compile or run button.

6.2.6 Exploring design spaces. In several instances, we observed
participants reuse images for different purposes. For instance, two
brothers, who were already in high school, created an applied game
about health. Much to their enjoyment, they identified how to reuse
the images of heart, cows and trees for health, burgers and pickles.

6.2.7 Prototyping and playtesting. Almost every participant fre-
quently switched between views for prototyping and playtesting.



Live Game Design: Prototyping at the Speed of Play FDG ’25, April 15–18, 2025, Graz, Austria

In addition, we have not observed any crashes or unexplainable
behavior. However, based on our observations, we have gained new
insights. We have also made several improvements and bug-fixes.

6.3 Reflections and Insights
We have gained the following insights about improvements.

6.3.1 Beginners. Novices lack a mental model of how the rules
work. However, having no prior experience did not prevent them
from exploring. Vie’s minimalist interface supports the process of
discovery, in accordance with Principles P7, P8 and P9.

6.3.2 Engaging with subject matter. Based on our observations,
we conclude the subject matter helped at least some participants
engage, supporting the principles of specific themes (P12) and capti-
vating examples (P13). However, for educators, identifying suitable
examples still poses a significant challenge.

6.3.3 Abstraction. Our marble machine analogy has a flaw. Design-
ers often need to abstract from resource locations and movement in
game economies. As witnessed by the duplicate names, this is hard
for novices. However, experts also find this difficult, and meaning
can be experienced in different ways. Vie has gameplay too.

6.3.4 Learnable effects. With the proper guidance, the tool’s in-
terface provides a usable starting point for beginners. Of course,
feedback is essential for learning, but interpretation and evaluation
require time and practice. Just like a good game, a game designed
to create other games should be easy to learn and hard to master.

6.3.5 Continuous processes. The frequent switching between views
indicates that prototyping and playtesting are seamless processes
(Principle P5). Adding buttons, labels and sprites automatically is a
particularly useful feature. The principles of continuous processes
(P5) and universal playability (P6) seem to come naturally to novices.
We hypothesize they are accustomed to using apps that simply al-
ways and immediately work, restoring the state automatically.

6.3.6 Universal playability. Automatically adding buttons, labels
and sprites worked especially well for playability. However, in many
cases rapid changes resulted in visual clutter. Because elements may
represent conscious design decisions, Vie does not automatically
clean them up. To address this issue we propose amental investment
design principle. Interactive elements may be automatically added
for playability. These elements can outlive their usefulness when
they lose their function, and be removed if never seen or edited.

6.3.7 Meaningful change. There are a few cases, specific to textual
input, where we cannot avoid errors. For instance, we now clearly
mark duplicate names locally in red. We observe the principles
of observable (P1), immediate (P2) and learnable (P3) feedback.
In addition, the game continues to function (P6). However, the
solution is not perfect because it violates the principle of meaningful
change (P4). Our observations suggest novices need guidance to
realize meaningful change. Future versions of Vie could provide
explanations and suggest coding actions.

6.3.8 Generic tool. We see evidence that Vie is a generic tool for
exploring design spaces (Principles P10 and P11). This is witnessed
by examples where novices reused images for designs outside of

the boundaries of the themes. An important limitation is that Vie
currently only offers a limited set of sprites. Leveraging generative
AI could further improve the uses of Vie as a generic tool.

6.3.9 Usability improvements and bug-fixes. We added drag and
drop functionality because clicking twice was not intuitive. In addi-
tion, the editor palettes now show icons instead of text. We fixed an
incorrect boundary condition that could cause a pool to overflow.

7 Discussion
We discuss the costs and benefits of Live Game Design, reflect on
the limitations and threats to validity of our work.

Applying Vie comes at a cost. Despite our best efforts to make
programming easier, game design is intrinsically complex, and
learning how to program remains difficult. For educators, creating
design themes to guide explorations requires time and effort. A
separate editor for creating them is not yet available.

Vie also has compelling benefits. Using Vie, designers can pro-
totype and playtest simultaneously. Vie is accessible to novices.
By introducing mini-cycles in its design, users receive immediate
feedback about the impact of gradual changes on running software.
This is fundamental for learning cause-and-effect relationships.

Although Machinations is already well-validated, the evaluation
of Vie is still limited. The observational study is biased toward
highly skilled participants. As a result, we cannot yet draw general
conclusions. Further study will also require quantitative analyses.

Save and load functionality is currently limited to Machinations
diagrams. Instead of loading the syntax directly, Vie distills coding
actions. When the interpreter executes these, a playable UI design is
generated automatically. Currently, modified UI designs cannot be
stored. Vie is a generic design tool. However, it currently only offers
a limited set of sprites. We do not yet leverage image generators.

The design principles we have proposed have provided useful
guidelines for reasoning about Live Game Design. However, the
qualities we have formulated are merely a solution proposal and a
first step towards empirically evaluated theoretical foundations.

7.1 Challenges and Opportunities
We discuss open research challenges. Visual interfaces support
correct modifications to the syntax. Textual interfaces allow for
temporarily incorrect input until coding actions can be distilled. A
key challenge is integrating these two coding styles.

Integrating generative AI into game design processes is another
challenge. Prompt engineering is inherently unpredictable, which
violates our design principles. However, the chain of thought aligns
perfectly with the cause-and-effect chains that power Vie.

Tutorial generation is an unexplored area. A key challenge is
how to generate exercises tailored towards an individual learner’s
expertise and needs. Because Vie is a change-based programming
environment, its built-in version history records every coding ac-
tion, user interaction and side effect. This presents an opportunity
for studying interaction patterns empirically.

8 Related Work
The contributions of this paper intersect at three main areas: Auto-
mated Game Design, Live Programming, and Educational Program-
ming Environments for Game-Based Learning.



FDG ’25, April 15–18, 2025, Graz, Austria Riemer van Rozen

8.1 Automated Game Design
Various languages, techniques and tools have been proposed for
creating, generating, analyzing and improving a game’s parts. Much
of the work in this area has originated from the AI and games
community [25, 41]. Design tools offer interactive user interfaces
that support prototyping [25], sketching designs [21], automating
play testing, and exploring design spaces. Early approaches were
logical formalisms [25, 36]. Ludi, an evolutionary game design
system with a Lisp-like notation, famously generated the fun board
game Yavalath [2]. Its successor Ludii has been used to study ancient
games, generate puzzles, and support AI competitions [3].

Mixed-initiative approaches offer a conversational interaction
style where users and computers take turns adjusting content [19],
e.g., the level generation of Tanagra [37]. Persuasion and procedural
rhetorics have also been influential, e.g., in the micro-rhetorics
of Game-o-Matic [42], and the high-level constraints of Germi-
nate [18]. Casual creators are tools that support an easy, pleasurable,
and expressive design space exploration [4]. Tracery, for instance,
has been used for procedural chat bots, poetry, and imagery [5]. Puz-
zleScript is an online engine and a textual programming language
created specifically for puzzle game design [20].

Wevva is a fluidic game, moldable through play and design [12].
In rapid game jams, kids explore predefined design spaces. After
setting visual design parameters, e.g., for physics and scoring, they
press play to start the game. Vie shares its aims of accessible and
rapid exploration, and reduced cognitive load.

Puck is a game design tool that integrates continuous creativity
with an exhaustive form of procedural content generation [7]. Puck
and Vie occupy different design spaces. In Puck, design revolves
around generating 2D tile maps, and evaluating single and multi-
player games. In Vie, generative responses to edits help ensure
playability. Evaluation primarily involves manual playtesting.

The principles of Live Game Design introduce a new way of
reasoning about and evaluating game design tools. Vie is the first
tool that takes the form of a visual live programming environment.
Accessible enough to be a casual creator, its mini-cycles focus on
learning to code. Vie also aims for quality and productivity.

8.2 Live Programming
We identify three distinct types of Live Game Design. The first
involves updating online games by hot-swapping components. The
second features designing games in live, on-stage performances,
which is akin to live coding. This may include recompilation and
restarts. The third, proposed in this paper, is a form of Live Pro-
gramming that enables simultaneous prototyping and playtesting
without restarts, making it well-suited to support the other two.

Live Programming is a style of programming that revolves around
continuous change and immediate feedback [30, 39]. Game engines
usually integrate some liveness features in their editors [30], e.g.,
not requiring restarts on changes to scene graphs or variable values.

However, in academia the combination of games and Live Pro-
gramming is a relatively new area [34, 50]. Until recently, a lack of
enabling technology prevented developers from creating live pro-
gramming environments that could migrate run-time states [47].
As a result, how to introduce inter-dependent mini-cycles has not
been studied before. Moreover, the dimensions of live programming

are not yet well understood [39]. The design principles we have
formulated represent a first step towards a foundational theory. Vie
is the first live programming environment of its kind.

8.3 Educational Programming Environments
Educational programming environments can trace their origins
back to the dawn of personal computing, and the early history of
Smalltalk [15]. Logo is an educational programming language that
is well-known for its “turtle”, which can be steered using commands
for drawing vector graphics [38]. Turtle graphics offer a powerful
metaphor for drawing. In this paper, we have identified another
space. We propose marble machines as a metaphor for game design.

Scratch is a visual environment for creating, designing and remix-
ing interactive stories, games, animations, and simulations [32].
Using Scratch, children between 6 and 12 years old learn creative
thinking, logic and programming concepts. Scratch is a block-based
language whose syntactic constructs fit together as puzzle pieces.
Vie instead offers a domain-specific notation that is graph-based.

Kodu is a visual programming language for young children that
supports learning by means of independent and playful explo-
ration [23]. In Kodu, rules control robots in a real-time 3D gaming
environment. Instead of having a fixed design theme, Vie introduces
subject matter through programmable themes.

Agentsheets is a visual tool for creating agent-based games and
simulations, also used for teaching game design [31]. Agents simu-
late a game and provide syntactic and semantic feedback. GameStar
Mechanic is an RPG-style online game for teaching the fundamen-
tals of game design to children aged 7 to 14 [33]. GameDevDojo
is a visual programming environment that provides a game-based
learning approach to teach foundational game development con-
cepts, such as mechanics, gameplay, sprites, and levels [14]. Vie
stands out as a visual live programming environment, designed
specifically to speed up prototyping and bring the code to life.

9 Conclusion
In this paper we have proposed Live Game Design, a novel approach
that combines Automated Game Design with Live Programming for
prototyping and playtesting simultaneously. We have introduced
Vie, a visual programming environment that enables quickly creat-
ing simple 2D games using Machinations. To evaluate the app, we
have conducted an observational study on a tutorial for children
aged 8 to 14. Our results show that Vie is accessible to novices and
that Live Game Design enables prototyping at the speed of play.

Acknowledgments
We thank the workshop participants, and Daria (Dasha) Protsenko
for co-hosting the second workshop. We also thank our partners in
the Live Game Design RAAK-MKB project, funded by NWO/SIA
from 2016 to 2019. Special thanks to Joris Dormans (Ludomotion),
Loren Roosendaal (Knowingo), Paul Brinkkemper (Money Maker),
and Anders Bouwer (AmsterdamUniversity of Applied Sciences) for
their continued collaboration and support over the years. Finally, we
thank the anonymous reviewers for their feedback and suggestions,
which helped improve this paper.



Live Game Design: Prototyping at the Speed of Play FDG ’25, April 15–18, 2025, Graz, Austria

References
[1] Ernest Adams and Joris Dormans. 2012. Game Mechanics: Advanced Game Design.

New Riders.
[2] Cameron Browne. 2012. Yavalath: Sample Chapter from Evolutionary Game

Design. J. Int. Comput. Games Assoc. 35, 1 (2012).
[3] Cameron Browne, Matthew Stephenson, Éric Piette, and Dennis J. N. J. Soemers.

2019. A Practical Introduction to the Ludii General Game System. In Advances in
Computer Games, ACG 2019 (LNCS, Vol. 12516). Springer.

[4] Kate Compton and Michael Mateas. 2015. Casual Creators. In Proceedings of the
Sixth International Conference on Computational Creativity, ICCC 2015. computa-
tionalcreativity.net.

[5] Kate Compton andMichaelMateas. 2015. Tracery: AnAuthor-FocusedGenerative
Text Tool. In Foundations of Digital Games, FDG 2015. SASDG.

[6] Michael Cook. 2020. Software Engineering For Automated Game Design. In IEEE
Conference on Games, CoG 2020. IEEE.

[7] Michael Cook. 2022. Puck: A Slow and Personal Automated Game Designer.
In Proceedings of the Eighteenth AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, AIIDE 2022. AAAI Press.

[8] Albert Danial et al. 2012. cloc-1.96. https://github.com/AlDanial/cloc
[9] Joris Dormans. 2009. Machinations: Elemental Feedback Patterns for Game

Design. In GAME-ON-NA. EUROSIS.
[10] Joris Dormans. 2009. Machinations Tool. https://discussions.unity.com/t/any-

offline-machinations-like-tool/762019 Last visited: October 24 2024.
[11] Tracy Fullerton. 2014. Game Design Workshop: A Playcentric Approach to Creating

Innovative Games. CRC press.
[12] Swen E. Gaudl, Mark J. Nelson, Simon Colton, Rob Saunders, Edward Jack Powley,

Blanca Pérez Ferrer, Peter Ivey, and Michael Cook. 2018. Rapid Game Jams with
Fluidic Games: A User Study & Design Methodology. Entertainment Computing
27 (2018).

[13] Alan R. Hevner et al. 2004. Design Science in Information Systems Research. MIS
Quarterly 28, 1 (March 2004).

[14] Michael Holly, Lisa Habich, and Johanna Pirker. 2024. GameDevDojo - An
Educational Game for Teaching Game Development Concepts. In Foundations of
Digital Games, FDG 2024. ACM.

[15] Alan C. Kay. 1993. The Early History of Smalltalk. In History of Programming
Languages Conference (HOPL-II). ACM.

[16] Paul Klint and Riemer van Rozen. 2013. Micro-Machinations: A DSL for
Game Economies. In Software Language Engineering, SLE 2013 (LNCS, Vol. 8225).
Springer.

[17] Raph Koster. 2013. Theory of Fun for Game Design. O’Reilly Media, Inc.
[18] Max Kreminski, Melanie Dickinson, Joseph C. Osborn, Adam Summerville,

Michael Mateas, and Noah Wardrip-Fruin. 2020. Germinate: A Mixed-Initiative
Casual Creator for Rhetorical Games. In Artificial Intelligence and Interactive
Digital Entertainment, AIIDE 2020. AAAI Press.

[19] Gorm Lai, Frederic Fol Leymarie, and William Latham. 2022. On Mixed-Initiative
Content Creation for Video Games. IEEE Transactions on Games 14, 4 (2022).

[20] Stephen Lavelle. 2015. PuzzleScript. https://github.com/increpare/PuzzleScript
[21] Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius. 2013. Sentient

Sketchbook: Computer-Aided Game Level Authoring. In Foundations of Digital
Games, FDG 2013. SASDG.

[22] Juan Linietsky, Ariel Manzur, and the Godot community. 2025. Godot Engine 4.4
documentation. https://docs.godotengine.org Last visited: March 26 2025.

[23] Matthew B. MacLaurin. 2011. The Design of Kodu: A Tiny Visual Programming
Language for Children on the Xbox 360. SIGPLAN Not. 46, 1 (Jan. 2011).

[24] Richard E. Mayer and Roxana Moreno. 2003. Nine Ways to Reduce Cognitive
Load in Multimedia Learning. Educational psychologist 38, 1 (2003).

[25] Mark J. Nelson and Michael Mateas. 2007. Towards Automated Game Design.
In Artificial Intelligence and Human-Oriented Computing, AI*IA 2007 (LNCS,
Vol. 4733). Springer.

[26] Jakob Nielsen. 1993. Response Times: The 3 Important Limits. (1993). https:
//www.nngroup.com/articles/response-times-3-important-limits/

[27] Donald A. Norman. 1986. Cognitive Engineering. User centered system design 31
(1986), 61.

[28] Paul Pivec. 2009. Game-Gased Learning or Game-Based Teaching. British Educa-
tional Communications and Technology Agency (BECTA), corp creator (2009).

[29] Meihua Qian and Karen R. Clark. 2016. Game-based Learning and 21st Century
Skills: A Review of Recent Research. Comput. Hum. Behav. 63 (2016).

[30] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape.
2019. Exploratory and Live, Programming and Coding - A Literature Study
Comparing Perspectives on Liveness. Art Sci. Eng. Program. 3, 1 (2019), 1.

[31] Alexander Repenning and Tamara Sumner. 1995. Agentsheets: A Medium for
Creating Domain-Oriented Languages. Computer 28, 3 (1995).

[32] Mitchel Resnick, John H. Maloney, Andrés Monroy-Hernández, Natalie Rusk,
Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay S. Silver,
Brian Silverman, and Yasmin B. Kafai. 2009. Scratch: Programming for All.
Commun. ACM 52, 11 (2009).

[33] Katie Salen. 2007. Gaming Literacies: A Game Design Study in Action. Journal
of Educational Multimedia and Hypermedia 16, 3 (2007).

[34] Anthony Savidis and Alexandros Katsarakis. 2021. Game Development as a Seri-
ous Game with Live-Programming and Time-Travel Mechanics. In Entertainment
Computing, ICEC 2021. Springer.

[35] Jesse Schell. 2008. The Art of Game Design: A Book of Lenses (1st ed.). CRC press.
[36] Adam M. Smith, Mark J. Nelson, and Michael Mateas. 2010. LUDOCORE: A

Logical Game Engine for Modeling Videogames. In Proceedings of the 2010 IEEE
Conference on Computational Intelligence and Games, CIG 2010. IEEE.

[37] Gillian Smith, Jim Whitehead, and Michael Mateas. 2011. Tanagra: Reactive
Planning and Constraint Solving for Mixed-Initiative Level Design. IEEE Trans.
Comput. Intell. AI Games 3, 3 (2011).

[38] Cynthia Solomon, Brian Harvey, Ken Kahn, Henry Lieberman, Mark L. Miller,
Margaret Minsky, Artemis Papert, and Brian Silverman. 2020. History of Logo.
Proc. ACM Program. Lang. 4, HOPL (2020).

[39] Steven L. Tanimoto. 2013. A Perspective on the Evolution of Live Programming.
In Workshop on Live Programming, LIVE 2013. IEEE.

[40] Machinations.io Dev. Team. 2024. Machinations.io. https://machinations.io
Last visited: March 26th 2025.

[41] Julian Togelius and Jürgen Schmidhuber. 2008. An Experiment in Automatic
Game Design. In Computational Intelligence and Games, CIG 2009. IEEE.

[42] Mike Treanor, Bryan Blackford, Michael Mateas, and Ian Bogost. 2012. Game-O-
Matic: Generating Videogames that Represent Ideas. InWorkshop on Procedural
Content Generation, PCG 2012. ACM.

[43] Jeroen J. G. van Merriënboer and John Sweller. 2005. Cognitive Load Theory
and Complex Learning: Recent Developments and Future Direction. Educational
Psychology Review 17, 2 (2005).

[44] Riemer van Rozen. 2015. A Pattern-Based Game Mechanics Design Assistant. In
International Conference on the Foundations of Digital Games, FDG 2015. SASDG.

[45] Riemer van Rozen. 2021. Languages of Games and Play: A Systematic Mapping
Study. Comput. Surveys 53, 6 (2021).

[46] Riemer van Rozen. 2023. Cascade: A Meta-Language for Change, Cause and
Effect. In International Conference on Software Language Engineering (SLE 2023).
ACM.

[47] Riemer van Rozen. 2023. Game Engine Wizardry for Programming Mischief. In
International Workshop on Programming Abstractions and Interactive Notations,
Tools, and Environments, PAINT 2023. ACM.

[48] Riemer van Rozen. 2024. Live Game Design: You Make the Rules. In CWI Open
Day, Science Weekend, Oktober 5 2024. Tutorial, demo and workshop.

[49] Riemer van Rozen. 2025. Vie – v0.0.7. (March 2025). https://vrozen.github.io/Vie
[50] Riemer van Rozen and Joris Dormans. 2014. Adapting Game Mechanics with

Micro-Machinations. In Foundations of Digital Games, FDG 2014. SASDG.

https://github.com/AlDanial/cloc
https://discussions.unity.com/t/any-offline-machinations-like-tool/762019
https://discussions.unity.com/t/any-offline-machinations-like-tool/762019
https://github.com/increpare/PuzzleScript
https://docs.godotengine.org
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://machinations.io
https://vrozen.github.io/Vie


FDG ’25, April 15–18, 2025, Graz, Austria Riemer van Rozen

A Cheat Sheet
Machinations is a visual language for designing a game’s rules. Vie uses a variant of
this notation. Diagrams (or programs) are graphs that consists of two kinds of elements:
nodes and edges. Both can be adjusted with extra information. These elements deter-
mine how resources (marbles) are step by step redistributed (roll) along the paths of
the diagram (the marble track). This cheat sheet describes the main language elements.

3

Apples

A pool is a node with a name that can contain resources (marbles)
such as coins, crystals or apples. A pool appears as a circle with a
number inside that represents the current amount, and the starting
amount (at). The maximum capacity (max) determines when a pool is
full, and no more marbles can be added.

4

A resource connection is an edge with an associated amount that repre-
sents the rate at which marbles roll between source and target nodes.
Every step, each node can work once by redistributing marbles along
the resource connections of the marble track. The inputs of a node are
the resource connections on the left, and the outputs are on the right.

The activation modifier (when) determines when a node can work.
By default, nodes are passive (no symbol). User nodes (double line),
represent interactive elements offering actions users can activate.
Automatic nodes (*) work automatically.

Enter

&
Nodes work (act) either by pulling marbles along their inputs (de-
fault, no symbol) or by pushing marbles along their outputs (p).
They work in two ways (how). Nodes that have the any modifier
(default, no symbol) interpret the amounts of their source connections
as upper bounds and move as many marbles as possible. For nodes
that instead have the all modifier (&), these are strict requirements,
and the associated flows either all happen or not at all.

A source, a node shown as a triangle pointing up, is the only ele-
ment that can generate marbles. Sources can be seen as a pool with
an infinite amount of marbles. They can always provide sufficient
marbles.

A drain, a node shown as a triangle pointing down, is the only element
where marbles can disappear. Drains can be seen as pools with an
infinite negative amount of marbles. They can always consume more.

*
A trigger is a connection whose value is a multiplication sign (*). The
source node of a trigger activates the target node when sufficient
marbles roll for each resource connection on which that node acts.

Converters are nodes shown as triangles pointing to the right with a
vertical line through the middle. They consume one type of resource
and produce another. Converters only work if all the required marbles
are available at the inputs.


	Abstract
	1 Introduction
	2 Machinations
	2.1 Background
	2.2 Tutorial

	3 Problem Overview
	3.1 Automated Game Design
	3.2 Game-Based Learning
	3.3 Live Programming

	4 Live Game Design
	4.1 Design Principles

	5 Vie: A Tool for Live Game Design
	5.1 Requirements
	5.2 Tool Architecture
	5.3 Language Design
	5.4 Implementation

	6 Observational Study
	6.1 Setup
	6.2 Observations
	6.3 Reflections and Insights

	7 Discussion
	7.1 Challenges and Opportunities

	8 Related Work
	8.1 Automated Game Design
	8.2 Live Programming
	8.3 Educational Programming Environments

	9 Conclusion
	Acknowledgments
	References
	A Cheat Sheet

